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Core Standards

The curriculum in this book aligns with the Common Core State Standards:
corestandards.org2

High School: Functions: Trigonometric Functions corestandards.org3

Extend the domain of trigonometric functions using the unit circle.
High School: Functions: Trigonometric Functions
Extend the domain of trigonometric functions using the unit circle

• CCSS.MATH.CONTENT.HSF.TF.A.14: Understand radian measure of
an angle as the length of the arc on the unit circle subtended by the angle.
(Definition 1.2.18)

• CCSS.MATH.CONTENT.HSF.TF.A.25: Explain how the unit circle in
the coordinate plane enables the extension of trigonometric functions
to all real numbers, interpreted as radian measures of angles traversed
counterclockwise around the unit circle. (Subsection 1.3.2)

• CCSS.MATH.CONTENT.HSF.TF.A.36: Use special triangles to deter-
mine geometrically the values of sine, cosine, tangent for π/3, π/4 and
π/6, and use the unit circle to express the values of sine, cosine, and
tangent for x, π + x, and 2π − x in terms of their values for x, where x is
any real number. (Subsection 1.4.2, Subsection 1.5.3)

• CCSS.MATH.CONTENT.HSF.TF.A.47: Use the unit circle to explain
symmetry (odd and even) and periodicity of trigonometric functions.
Model periodic phenomena with trigonometric functions. (Subsection 1.5.4,
Subsection 1.5.7)

Prove and apply trigonometric identities

• CCSS.MATH.CONTENT.HSF.TF.C.88: Prove the Pythagorean identity
sin2 θ + cos2 θ = 1 and use it to find sin θ, cos θ, or tan θ given sin θ, cos θ,
or tan θ and the quadrant of the angle. (Definition 1.5.20)

High School: Geometry: Similarity, Right Triangles, and Trigonometry
Define trigonometric ratios and solve problems involving right triangles

2http://www.corestandards.org/Math/Content/HSF/TF/
3http://www.corestandards.org/Math/Content/HSF/TF/
4www.thecorestandards.org/Math/Content/HSF/TF/A/1/
5www.thecorestandards.org/Math/Content/HSF/TF/A/2/
6www.thecorestandards.org/Math/Content/HSF/TF/A/3/
7www.thecorestandards.org/Math/Content/HSF/TF/A/4/
8www.thecorestandards.org/Math/Content/HSF/TF/C/8/
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ix

• CCSS.MATH.CONTENT.HSG.SRT.C.69: Understand that by similarity,
side ratios in right triangles are properties of the angles in the triangle,
leading to definitions of trigonometric ratios for acute angles. (Defini-
tion 1.4.1)

• CCSS.MATH.CONTENT.HSG.SRT.C.710: Explain and use the rela-
tionship between the sine and cosine of complementary angles. (Defini-
tion 1.4.7, Remark 1.4.9)

• CCSS.MATH.CONTENT.HSG.SRT.C.811: Use trigonometric ratios and
the Pythagorean Theorem to solve right triangles in applied problems.
(Subsection 1.4.6)

High School: Geometry : Circles
Find arc lengths and areas of sectors of circles

• CCSS.MATH.CONTENT.HSG.C.B.512: Derive using similarity the fact
that the length of the arc intercepted by an angle is proportional to the
radius, and define the radian measure of the angle as the constant of pro-
portionality; derive the formula for the area of a sector. (Definition 1.2.18,
Theorem 1.2.25, Definition 1.2.28)

9www.thecorestandards.org/Math/Content/HSG/SRT/C/6/
10www.thecorestandards.org/Math/Content/HSG/SRT/C/7/
11www.thecorestandards.org/Math/Content/HSG/SRT/C/8/
12www.thecorestandards.org/Math/Content/HSG/C/B/5/
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Chapter 1

Trigonometry

1.1 Pacific Island Navigation
Pacific Islanders have been navigating across long distances in the Pacific for
centuries, even before the use of magnetic compasses or modern instruments.
They relied on observations of celestial bodies, such as stars and the sun, as
well as natural elements like ocean patterns, winds, bird behaviors, and other
environmental cues to determine their position relative to known landmarks
such as islands, reefs, and continents. Over time, much of this traditional
navigational knowledge was lost in many parts of the Pacific. However, some
islands, particularly in Micronesia and on Taumako Island in the Solomon
Islands, managed to preserve the art and science of traditional navigation.
These places continued to uphold the practice, teaching new generations to
build ocean-going canoes and develop navigational skills based on profound
knowledge of the natural world.

1.1.1 Micronesia
Navigators in Micronesia utilize the paafu mat or map (shown in Figure 1.1.1).
It is often misunderstood and misinterpreted as a Star “Compass” due to its
use of stars and constellations for direction finding. However, paafu serves a
different purpose and is not equivalent to the cardinal directionality marked
by compasses (North, South, East, and West). Instead, it is a learning and
teaching tool designed to teach the locational positions of islands, locales, or
canoes relative to other places. This is achieved by observing the rising and
setting points of stars and constellations, which act as markers for different
locations.

1
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Figure 1.1.1 Paafu mat or map - Photo courtesy of Kānehūnāmoku Voyaging
Academy

A constellation is a cluster of stars whose shapes and meanings reflect and
carry cultural significance. In modern society, a well-known cluster of stars in
the southern hemisphere, shaped like a cruciform, is commonly referred to as
the “Southern Cross.” However, for the Polowatese and other islanders from the
Central Carolines region in the western Pacific islands, this same constellation
resembles the triggerfish, and so it is named accordingly.

In the Central Carolines, the general location in the celestial sky where
stars appear to rise after sundown is referred to as “tan.” This term is often
mistakenly translated as “east” due to the modern association of stars (like
the sun) with “rising” in the east. However, it’s important to note that “tan”
means “rising” and not “eastward.”
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Figure 1.1.2 The paafu, or Micronesian Star Compass. Stars are identified
using the Polowat dialect of the Chuukese language as it is used by members of
the Weriyeng School of navigation.

Figure 1.1.2 orients the cardinal direction known as “east” at the top of the
page, and so the top half of this diagram is also identified as “tan” – where
stars appear to rise. The diagram illustrates the apparent path of stars across
the sky each night and day (though most stars are not visible during the day)
and throughout a year. In this system, the rising and presence of specific stars
mark months, and these same stars will eventually set at a point horizontally
opposite to where they rose. This point corresponds to the cardinal direction
known as “west,” which is referred to as “tolon” – the area where the stars “set”
or go down.

In the paafu “map” shown in Figure 1.1.2, a canoe is placed at the center,
and the star called Mailap (Altair) marks due east. The time and location
when Mailap rises are referred to as “Tan Mailap” (rising Mailap), while the
time and place it sets are referred to as “Tolon Mailap” (setting Mailap). The
map’s orientation places east, or the rising points of the navigation or paafu
stars, at the top of the circle, and west, or the setting points of these stars, at
the bottom of the circle. As a map, paafu uses the rising and setting points of
stars to mark places around a given locale, which is placed at the center of the
circle. Table 1.1.3 displays the star and constellation names, provided in both
Polowat and according to the International Astronomical Union, listed in the
order of their rising during the third week of March in Polowat.
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Table 1.1.3 Star and constellation names in Polowat

Polowat International Astronomical Union
Wenenwenenfuhmwaket Polaris (always above the horizon)
Tan Mwarikar [Mahrah-ker] Pleiades aka Seven Sisters
Tan Un [Oon] Aldebaran
Tan Uliul [Ooh-lee-ool] Orion’s Belt
Tan Harapwel [Ah-rah-pwol] Gamma Corvus
Tan Mailapenefang [My Lap in a Fang] Beta Ursa Minor in Big Dipper
Tan Up [Oop] Crux or Southern Cross at Rising
Machemeas [Matche-may-ess] Crux or S. Cross at 45◦ 1

Tan Welo [Well-Ah] Alpha Ursa Major in Big Dipper
Wenenwenenup [Wehneh wehnen Oop] Crux or S. Cross at Meridian or upright
Tan Tumur [Two More] Antares or Scorpio’s tail
Tan Maharuw [Maa-Haa-Roo] Shaula or Scorpio’s stinger
Tan Mol [Mohl] Vega
Tan Mailap [My Lap] Altair
Tan Paiefung [Pie Efung] Gamma Aquila
Tan Paior [Pie Or] Beta Aquila
Tan Ukinik [Icky Nick] Cassioepea

Paafu can also be used to identify the direction in which moving objects, such
as canoes, or creatures like birds, fish, and humans, are heading or coming from.
This version of paafu utilizes the Polowat dialect of the Chuukese language, as
used by members of the Weriyeng School of navigation.

1.1.2 Hawai‘i
With the aim of reviving wayfinding in Hawai‘i, Nainoa Thompson journeyed
to the island of Satawal in the Federated States of Micronesia to learn from
master navigator Mau Piailug, affectionately known as Papa Mau. Using this
knowledge, Thompson adopted the paafu method, leading to the creation of the
Hawaiian Star Compass, also referred to as the Kūkuluokalani (Figure 1.1.4).

In the star compass, featuring the figure of an ‘iwa or great frigatebird at its
center, Thompson divides the visual horizon into 32 equidistant points around
a circle, referred to as houses. Each house in the Hawaiian Star Compass
represents a specific space on the horizon (11.25◦) where celestial bodies such
as the sun, stars, moon, and planets rise and set. In the same way that we use
addresses to locate homes, each celestial body has its own address represented
by these houses.

1The “Tan” prefix is not used for this position, because it is no longer rising
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Figure 1.1.4 Hawaiian Star Compass, also known as the Kūkuluokalani.
The four cardinal points align with particular houses. Stars rise from the

horizon called Hikina (“To Arrive”) or East and set on the horizon called
Komohana (“To Enter”) or West. If you face Komohana (West) with your back
towards Hikina (East), your right will point towards ‘Ākau (“Right”) or North,
and your left will point towards Hema (“Left”) or South. The Hawaiian Star
Compass is oriented with North at the top.

The star compass is divided into four quadrants, each named after winds in
Hawai‘i. Ko‘olau is the Northeast quadrant named for the trade winds; Ho‘olua
is the Northwest quadrant, Kona is the Southwest quadrant; and Malanai is
the Southeast quadrant.

Each house on the star compass is given a name. The corresponding houses
in the east and west share the same name. Starting from the east or west and
moving northwards and southwards, the first house on either side of Hikina
(East) and Komohana (West) is called Lā (Sun). It is followed by ‘Āina (Land),
Noio (Tern), Manu (Bird), Nālani (Heavens), Nā Leo (Voices), and Haka
(Empty). The 32 houses in the Hawaiian Star Compass correspond to the
points of the 32-wind compass rose (Table 1.1.5).
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Table 1.1.5 The houses of the Hawaiian Star Compass and the corre-
sponding points on the 32-wind compass rose.

Star Compass 32 Point Compass Star Compass 32 Point Compass

House Symbol Name House Symbol Name

Hikina E East Komohana W West
Lā Ko‘olau EbN East by North Lā Kona WbS West by South
‘Āina Ko‘olau ENE East-northeast ‘Āina Kona WSW West-southwest
Noio Ko‘olau NEbE Northeast by East Noio Kona SWbW Southwest by West
Manu Ko‘olau NE Northeast Manu Kona SW Southwest
Nālani Ko‘olau NEbN Northeast by North Nālani Kona SWbS Southwest by South
Nā Leo Ko‘olau NNE North-northeast Nā Leo Kona SSW South-southwest
Haka Ko‘olau NbE North by east Haka Kona SbW South by West
‘Ākau N North Hema S South
Haka Ho‘olua NbW North by West Haka Malanai SbE South by East
Nā Leo Ho‘olua NNW North-northwest Nā Leo Malanai SSE South-southeast
Nālani Ho‘olua NWbN Northwest by North Nālani Malanai SEbS Southeast by South
Manu Ho‘olua NW Northwest Manu Malanai SE Southeast
Noio Ho‘olua NWbW Northwest by West Noio Malanai SEbE Southeast by East
‘Āina Ho‘olua WNW West-northwest ‘Āina Malanai ESE East-southeast
Lā Ho‘olua WbN West by North Lā Malanai EbS East by South

Celestial bodies move along parallel paths across the sky from East to West,
rising and setting in the same house, remaining in its hemisphere. For example,
if a star arrives in the Ko‘olau (northeastern) quadrant in the star house ‘Āina,
it will arc overhead, staying in the northern hemisphere, and enter the horizon in
the same house it arrived in, ‘Āina, but in the Ho‘olua (northwestern) quadrant
(see Figure 1.1.6). Similarly, if a star arrives in the Malanai (southeastern)
quadrant in the house Lā, it will remain in the southern hemisphere as it arcs
overhead and enters the horizon in the house Lā in the Kona (southwestern)
quadrant.

www.geogebra.org/material/iframe/id/nmjdg3kb

Figure 1.1.6 In the celestial sphere, stars rise in the east, arc across the sky,
and set in the west. Each star will both rise and set in the same house.

The star compass also serves as a guide for determining direction based
on wind and ocean swells. As the wind and swells move, they intersect the
star compass diagonally. For example, if a wind blows from the house Noio
in the Ko‘olau (northeast) quadrant, it will blow in the direction of the Kona
(southwest) quadrant and eventually exit in the same house, Noio.

Observations play a key role in determining direction using the star compass.
At night, Thompson relies on approximately 220 stars, memorizing where they

interactive-1.html
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rise and set on the horizon to navigate. During the day, we can use the sun’s
position on the horizon to gauge direction, but this method is only effective
when the sun is near the horizon at sunrise and sunset. Alternatively, one
can memorize the wind and wave directions, checking for any changes between
sunrise and sunset to establish their current direction.

The canoe itself can serve as a compass, as shown in Figure 1.1.7. From
the navigator’s seat on either corner of the stern (back) of the deck, you can
observe features like the rising sun and mark its position on the Star Compass
located on the canoe. It’s essential to note that the locations of the houses
on this Star Compass are in relation to the canoe, not to a fixed map. For
instance, only when the canoe is pointed towards the north will Hikina (East)
be the house to the right. Depending on the canoe’s orientation, at other times,
Hikina may appear several houses further up the deck.

Figure 1.1.7 The deck of a canoe can be used as a compass to help crew and
navigators.

1.1.3 Marshall Islands
The Marshallese people use stick charts as navigational tools. These stick
charts are constructed using a lattice-like structure made from curved and
straight sticks, typically formed by tying together the midribs of coconut fronds.
The curved sticks represent the islands and how they bend and refract the
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ocean swells, while the straight sticks symbolize the major wave patterns in the
surrounding waters.

The shells placed on the sticks indicate the relative locations of islands
within the Marshall Islands archipelago. These shells serve as markers, helping
navigators remember the positions of specific islands along their voyages.

Each stick chart is unique to its creator, reflecting their individual knowledge
and experiences. The personalization of the stick charts allows navigators to
develop a deep understanding of the ocean currents, wave patterns, and island
locations in their specific region.

The stick charts serve as mental maps or navigational aids, allowing expe-
rienced navigators to visualize and recall the complex information while on
their journeys. Navigators would memorize the stick charts, internalizing the
knowledge embedded within them, enabling them to navigate the open ocean.

Figure 1.1.8 Marshallese stick chart.

1.1.4 Elsewhere in the Pacific
In addition to the star compass, many cultures across the Pacific use a wind
compass. Similar to the star compass, the wind compass is also a mental
construct.

Other Pacific Island cultures have also adapted the modern Hawaiian Star
Compass to their languages, as illustrated in Figure 1.1.9.
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ā

Ra
ng

i

N
gā
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Lā

Lā
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(c) Sāmoan.

Figure 1.1.9 Examples of Star Compasses across the Pacific.

1.1.5 Exercises
1. Who developed the Hawaiian Star Compass?

Answer. Nainoa Thompson
2. The Hawaiian Star Compass was based on the Micronesian Star Compass,

known as the paafu. Who shared the paafu with the Hawaiians?
Answer. Mau Piailug or Papa Mau

3. According to the Hawaiian Star Compass, what is the name for
(a) North

Answer. ‘Ākau

(b) East

Answer. Hikina

(c) South

Answer. Hema

(d) West

Answer. Komohana
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4. What is the Hawaiian name for winds in the
(a) Northeast quadrant

Answer. Ko‘olau

(b) Southeast quadrant

Answer. Malanai

(c) Southwest quadrant

Answer. Kona

(d) Northwest quadrant

Answer. Ho‘olua

Exercise Group. For each direction, identify the Hawaiian names of the
corresponding house and quadrant in the Hawaiian Star Compass

5. Northwest by North
Answer. Nālani Ho‘olua

6. East-northeast
Answer. ‘Āina Ko‘olau

7. North-northwest
Answer. Nā Leo Ho‘olua

8. Southeast
Answer. Manu Malanai

9. South by West
Answer. Haka Kona

10. East by South
Answer. Lā Malanai

11. Southwest by West
Answer. Noio Kona

12. Northeast by North
Answer. Nālani Ko‘olau

13. South-southeast
Answer. Nā Leo Malanai

14. West-southwest
Answer. ‘Āina Kona

Exercise Group. Identify the corresponding point on the 32-wind compass
for each house on the Hawaiian Star Compass

15. Nā Leo Kona
Answer. South-southwest

16. ‘Āina Malanai
Answer. East-southeast

17. ‘Āina Ho‘olua
Answer. West-northwest

18. Lā Ko‘olau
Answer. East by North

19. Manu Ko‘olau
Answer. Northeast

20. Haka Malanai
Answer. South by East

21. Nālani Kona
Answer. Southwest by
South

22. Haka Ho‘olua
Answer. North by West

23. Noio Ho‘olua
Answer. Northwest by West

24. Noio Ko‘olau
Answer. Northeast by East

25. The winter solstice in the southern hemisphere occurs around June 22. It
is the time when the sun is at its lowest elevation in the sky, resulting in
the shortest daylight of the year. During the winter solstice, the sun rises
from its northernmost position, ‘Āina Ko‘olau. In what house does the
sun set during the winter solstice in the southern hemisphere?
Answer. ‘Āina Ho‘olua

26. The winter solstice in the northern hemisphere occurs around December
22 when the sun rises from its southernmost position, ‘Āina Malanai. In
which house does the sun set during the winter solstice in the northern
hemisphere?
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Answer. ‘Āina Kona
27. Wind is coming from Nā Leo Kona. In what direction is the wind blowing?

Answer. Nā Leo Ko‘olau
28. Current is coming from Noio Ho‘olua. In what direction is the current

heading?
Answer. Noio Malanai
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1.2 Angles and Their Measure
One method people use to identify their position is by looking at the latitude.
These imaginary lines form circles around the Earth and run parallel to the
Equator. The latitude of a place is defined as the angle between a line drawn
from the center of the Earth to that point and the equatorial plane. For any
point in the Northern Hemisphere, a navigator can measure their latitude by
determining the angle that Hōkūpa‘a (also known as Kūmau, Wuli wulifasmughet,
Fuesemagut, North Star, or Polaris) makes with the horizon.

Horizon
Angle of Hōkūpa‘a

⋆⋆Hokupa‘a

During voyages, knowing the correct angles can make the difference between
reaching your destination or missing it. Navigators carefully observe angles on
the Hawaiian Star Compass to determine the entry and exit points of celestial
bodies in the sky, as well as the direction of wind and current. In this section,
we will explore the properties of angles and their measure.

Definition 1.2.1 A ray is a part of a line that begins at a point O and extends
in one direction.

RayO

♢

Definition 1.2.2 We can create an angle, θ, by rotating rays. First, we begin
with two rays lying on top of each other and beginning at O. We let one ray be
fixed and will rotate the second ray about the point O. The ray that is fixed is
called the initial side and the ray that is rotated is called the terminal side.

Initial Side

Terminal Side

O

θ

♢

Remark 1.2.3 Angles are often measured using Greek letters. The commonly
used Greek letters include θ, ϕ, α, β, and γ.

1.2.1 Degree
The measure of an angle is the amount of rotation from the initial side to
the terminal side. One unit of measuring angles is the degree. One degree,
denoted by 1◦, is 1

360 of a complete circular revolution, so one full revolution is
360◦.

The Hawaiian Star Compass consists of 32 houses, each spanning 11.25◦

( 360◦

32 ). Assuming due East corresponds to 0◦ and the center of the House of
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Hikina points due East, the border between Hikina and Lā Ko‘olau will be half
the angle of the house, 5.625◦ ( 11.25◦

2 ). The angles for the other boundaries on
the Hawaiian Star Compass are shown in Figure 1.2.4.
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28.125◦
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151.875 ◦

163.125◦

174.375◦

185.625◦

196.875◦

208.125◦

219
.37

5◦

23
0.6

25
◦

24
1.8

75
◦

25
3.

12
5◦

26
4.

37
5◦

275.625 ◦

286.875 ◦

298.125 ◦
309.375 ◦

320.625 ◦

331.875 ◦

343.125◦

354.375◦

Lā
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Figure 1.2.4 The Star Compass with the angles indicating the boundaries for
each House.

Although decimals are commonly used to represent fractional parts of a
degree, traditionally, degrees were represented in minutes and seconds. One
minute or arc minute, denoted as 1′, is equal to 1

60 degrees, and one second
or arc second, denoted as 1′′, is equal to 1

60 minutes.

Remark 1.2.5 Conversion Between Degree, Minutes, and Seconds.

1◦ = 60′ 1′ =
(

1
60

)◦

1′′ =
(

1
3600

)◦

1◦ = 3600′′ 1′ = 60′′ 1′′ =
(

1
60

)′

Example 1.2.6 Convert angle from decimal degrees to degrees/
minutes/seconds. In the Star Compass (Figure 1.2.4), the angle between
the houses Manu Ho‘olua (northwest) and Noio Ho‘olua (northwest by west)
measures 140.625◦. Represent this angle in degrees, minutes, and seconds.
Solution. First we will convert 0.625◦ to minutes using the conversion 1◦ =
60′,

0.625◦ = 0.625◦ · 60′

1◦ = 37.5′
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Since 1′ = 60′′, we can convert 0.5′ to seconds: 0.5′ = 0.5′ · 60′′

1′ = 30′′.
So 140.625◦ = 140◦37′30′′. □

Example 1.2.7 Convert angle from degrees/minutes/seconds to deci-
mal degrees. Convert 263◦24′45′′ to decimal degrees.
Solution. We will first convert 24′ and 45′′ to degrees.

24′ = 24 · 1′ = 24 ·
(

1
60

)◦

= 0.4◦

and
45′′ = 45 · 1′′ = 45 ·

(
1

3600

)◦

= 0.0125◦

So 263◦24′45′′ = 263◦ + 24′ + 45′′ = 263◦ + 0.4◦ + 0.0125 = 263.4125◦ □

Definition 1.2.8 If an angle is drawn on the xy-plane, and the vertex is at
the origin, and the initial side is on the positive x-axis, then that angle is said
to be in standard position. If the angle is measured in a counterclockwise
rotation, the angle is said to be a positive angle, and if the angle is measured
in a clockwise rotation, the angle is said to be a negative angle.

x

y

positive angle

x

y

negative angle

♢

Definition 1.2.9 When an angle is in standard position, the terminal side
will either lie in a quadrant or it will lie on the x-axis or y-axis. An angle is
called a quadrantal angle if the terminal side lies on x-axis or y-axis. The
two axes divide the plane into four quadrants. In the Cartesian plane, the four
quadrants are Quadrant I, II, III, and IV. The corresponding quadrants of Star
Compass are Ko‘olau (NE), Ho‘olua (NW), Kona (SE), and Malanai (SW).

x

y

I
Ko‘olau

II
Ho‘olua

III
Kona

IV
Malanai

♢
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Definition 1.2.10 Coterminal angles are angles in standard position that
have the same initial side and the same terminal side. Any angle has infinitely
many coterminal angles because each time we add or subtract 360◦ from it, the
resulting angle has the same terminal side. ♢

Example 1.2.11 Coterminal angles. 90◦ and 450◦ are coterminal angles
since 450◦ − 360◦ = 90◦. □

To determine the quadrant in which an angle lies, add or subtract one
revolution (360◦) until you obtain a coterminal angle between 0◦ and 360◦. The
quadrant where the terminal side lies is the quadrant of the angle. Quadrantal
angles do not lie in any quadrant.

Example 1.2.12 Determine the corresponding house and quadrant in
the Star Compass. Determine the quadrant in which each angle lies and name
the corresponding House and quadrant in the Star Compass (Figure 1.2.4).

1. 140◦

2. −770◦

3. 923◦

Solution.

1. Since 90◦ < 140◦ < 180◦, 140◦ lies in Quadrant II, or Manu Ho‘olua.

2. Since −770◦ < 0◦, we first add 3 × 360 to −770◦ to obtain an angle 0◦

and 360◦,
−770◦ + 3 × 360◦ = 310◦

So 310◦ and −770◦ are coterminal. Since 270◦ < 310◦ < 360◦, 310◦ lies
in Quadrant IV, or Manu Malanai.

3. Since 923◦ > 360◦ we begin by subtracting 2 × 360◦

923◦ − 2 × 360◦ = 203◦

So 203◦ and 923◦ are coterminal. Since 180◦ < 203◦ < 270◦, 923◦ lies in
Quadrant III or ‘Āina Kona.

□

Example 1.2.13 Determine the corresponding quadrant given its
location in the Star Compass. What is the corresponding quadrant for
Nālani Kona?
Solution. Locating Nālani Kona in the Star Compass, we see it is in Quadrant
III. □

Definition 1.2.14 A central angle is a positive angle formed at the center of
a circle by two radii.
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O

Central
Angle

♢

Remark 1.2.15 Heading and Azimuth. In navigation, the direction a
wa‘a is pointed towards is referred to as the heading. Unlike in trigonometry,
where it is conventional to define an angle in standard position, i.e., 0◦ lies
along the positive x-axis, in navigation, North corresponds to a heading of 0◦

and positive angles are measured in a clockwise rotation (see Figure 1.2.16).
North

0◦ or 360◦
NE

45◦

East90◦

SE
90◦

South

180◦SW

225◦

West 270◦

NW

315◦

Figure 1.2.16 The cardinal directions for headings are as follows: 0◦ (or 360◦)
points north, 90◦ points east, 180◦ points south, and 270◦ points west.

The Star Compass can now be presented in terms of heading angles, as
demonstrated in Figure 1.2.17.
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Figure 1.2.17 The Star Compass is presented in terms of heading, with the
angles indicating the boundaries for each House.

In astronomy and navigation, the position of a celestial body as it rises
or sets on the horizon can be measured using the azimuth, which indicates
the direction of celestial objects relative to an observer’s position. Similar to
heading, azimuth starts from the north and increases clockwise.

In navigation, “heading” typically denotes the direction an object like a canoe
or wind is pointed, whereas “azimuth” pertains to the angular measurement
of celestial bodies on the horizontal plane. Both “heading” and “azimuth”
measure angles in degrees, beginning from north and progressing clockwise.
Unless specified otherwise to use the heading or azimuth angle (in which case,
refer to Figure 1.2.17), this book will use Figure 1.2.4 for the angles of the Star
Compass.

1.2.2 Radian
Another way to measure an angle is with radians, which measure the the arc of
a circle that is formed from an angle.

Definition 1.2.18 Definition of a Radian. The radian measure of a
central angle in a circle is the ratio of the length of the arc on a circle subtended
by the angle to the radius. If r is the radius of the circle, θ is the angle, and s
is the arc length, then we have the following

θ = s

r
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A radian is abbreviated by rad.

x

y

s

r
θ

♢
The measure of a central angle obtained when the length of the arc is also

equal to the radius, r, is called one radian (1 rad). Similarly, if θ = 2 rad, then
the arc length equals 2r.

x

y

r

r

θ=1 rad
x

y

r

r

r

θ=2 rad

The circumference of a circle is C = 2πr. This means that the circumference
is 2π ≈ 6.28 times the radius. Consequently, if we were to use a piece of string
with the length of the radius, we would need six pieces of string plus a fractional
piece of the string, as shown in Figure 1.2.19.
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x

y

r

r

r

r

r

r

0 radians,2π ≈ 6.28 radians

1 radian2 radians

3 radians

4 radians
5 radians

6 radians
fractional piece

Figure 1.2.19 One rotation of the unit circle is 2π ≈ 6.28 radians.

Remark 1.2.20 Relationships Between Degrees and Radians. If a circle
with radius 1 is drawn, it has 360◦, and the full arc length is the circumference,
which is 2π. Therefore,the relationship between degrees and radians is:

360◦ = 2π radian, or 180◦ = πradian

1 radian = 180◦

π

1◦ = π

180 radian

Remark 1.2.21 Converting Between Degrees and Radians.

1. To convert degree to radians, multiply by 2π radians
360◦ or π radian

180◦

2. To convert radians to degrees, multiply by 360◦

2πradians or 180◦

π radian
Example 1.2.22 Express 45◦ in radians.

Solution. 45◦ = 45◦
(

2π radians
360◦

)
= π

4 radians □

Example 1.2.23 Express 5π

6 in degrees.

Solution. 5π

6 rad = 5π

6 rad
(

360◦

2π rad

)
= 150◦ □

Using this method, we can obtain Table 1.2.24 of common angles used in
trigonometry and the corresponding radian and degree measures.
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Table 1.2.24 Commonly Used Angles in Trigonometry: Degrees and
Radians

Radians 0 π

6
π

4
π

3
π

2
2π

3
3π

4
5π

6 π

Degrees 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦

Radians π
7π

6
5π

4
4π

3
3π

2
5π

3
7π

4
11π

6 2π

Degrees 180◦ 210◦ 225◦ 240◦ 270◦ 300◦ 315◦ 330◦ 360◦

1.2.3 Arc Length
Recall that the definition of a radian is the ratio of the arc length to the radius
of a circle, θ = s

r . By rearranging this formula, we can obtain a formula for the
arc length of a circle.

Theorem 1.2.25 In a circle of radius r, the arc length, s, subtended by a
central angle (in radians), θ, is

s = rθ

If θ is given in degrees, then s = 2πr ·
(

θ

360◦

)
.

Example 1.2.26 Find the length of an arc of a circle with radius 10 cm
subtended by an angle of 2 radians.
Solution. Using the arc formula we get s = 10cm · 2rad = 20cm. □

Example 1.2.27 Kiritimati, also known as Christmas Island, is an atoll in
the Republic of Kiribati. Kiritimati’s location west of the International Date
Line makes it one of the first places in the world to welcome the New Year,
while Hawai‘i is one of the last places. Although Kiritimati and Moloka‘i share
the same longitude at 157◦12′ west (meaning Moloka‘i is directly north of
Kiritimati), both islands are 24 hours apart. For example, if the time on O‘ahu
is 3:00 pm on Thursday, then at that same moment it is 3:00 pm on Friday in
Kiritimati. Find the distance between Kiritimati ( 1◦45′ north latitude) and
Moloka‘i (21◦08′ north latitude). Assume the radius of Earth is 3,960 miles
and that the central angle between the two islands is the difference in their
laititudes.
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O

N

S

Moloka‘i

21◦08′N

1◦45′N

157◦12′W

Kiritimati

r

r
θs

Solution. The measure of the central angle between the two islands is

θ = 21◦08′ − 1◦45′

= 19◦23′

= 19◦ + 23
60

◦

≈ 19.3833◦

To find the distance, we use Theorem 1.2.25 to find the arc length:

s = 2πr ·
(

θ

360◦

)
≈ 2π · (3, 960 miles)19.3833◦

360◦ ≈ 1, 340 miles

So the distance between Kiritimati and Moloka‘i is approximately 1,340
miles. □

1.2.4 Area of a Sector of a Circle
Definition 1.2.28 Area of a Sector. The area of the sector of a circle
of radius r formed by a central angle of θ is

A = θ

360◦ · π · r2, when θ is in degrees

A = 1
2r2θ, when θ is in radians

♢

Notice the ratio θ

360◦ is the proportion of the angle θ (in degrees) to one
complete circle. Additionally, the circumference of a circle is given by 2πr.
Therefore, the arc length is simply the proportion of the central angle to the
whole circle multiplied by the circumference of the circle.

s = arc length = (proportion of circle) · (circumference) =
(

θ

360◦

)
· (2πr)

Similarly, the area of a circle is given by πr2. So the area of sector is the
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proportion of the central angle to the whole circle multiplied by the area of the
circle.

A = area of sector = (proportion of circle) · (area of circle) =
(

θ

360◦

)
·
(
πr2)

Theorem 1.2.29 Given a circle of radius r formed by a central angle of θ,
then the arc length and area of the sector formed by θ can be expressed as the
proportion of the angle to the full circle multiplied by the circumference and
area of the circle, respectively.

s = (proportion of circle) · (circumference) =
(

θ

360◦

)
· (2πr)

and
A = (proportion of circle) · (area of circle) =

(
θ

360◦

)
·
(
πr2)

Example 1.2.30 When sailing, Hōkūle‘a cannot make headway by sailing
directly into the wind. It can only sail beyond 67◦ in either direction from the
wind (Figure 1.2.31). If Hōkūle‘a sails for 50 miles, what is the area of the
sector that cannot be sailed? Round your answer to the nearest square mile.

67◦67◦

Downwind

Upwind

Figure 1.2.31 Hōkūle‘a cannot sail within 67◦ into the direction of the wind.

Solution. The angle is θ = 2 · 67◦ = 134◦ and the radius is r = 50 miles. So
the area is given by

A = θ

360◦ π · r2 = 134
360π · 502 ≈ 2, 923 square miles

□
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1.2.5 Angular Velocity and Linear Speed
Consider an object moving along a circle as shown below. There are two ways
to describe the circular motion of this object: linear speed which measures the
distance traveled; and angular speed which measures the rate at which the
central angle changes.

s

r
θ

Definition 1.2.32 Linear Speed. Suppose an object moves along a circle
with radius r and θ (measured in radians) is the angle transversed in time t.
Let s be the distance the object traveled in time t. Then the linear speed, v,
of the object is given by

v = s

t

♢

Definition 1.2.33 Angular Speed. Suppose an object moves along a circle.
Let θ (measured in radians) be the angle transversed by the object in time t.
The angular speed, ω, of the object is given by

ω = θ

t

♢
Notice that we can rearrange the angular speed to get θ = ωt. Since s is an

arc length, we have s = rθ, and thus we can write the linear speed as

v = s

t
= rθ

t
= rωt

t
= rω

Definition 1.2.34 Linear Speed. Suppose an object moves along a circle
with radius r and an angular speed ω (measured in radians per unit time).
Then the linear speed, v, of the object is given by

v = rω

♢

Example 1.2.35 Une.
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One method a wa‘a uses to change direction is with the hoe uli, or the
steering paddle. When a sharp turn is needed for maneuvers such as tacking,
the steersperson will turn the handle of the hoe uli in a circular motion, as
a lever to scoop the paddle in the water and change the heading of a vessel.
This move called une (prounced oo-NAY although it is often mispronounced as
oo-NEE) literally translates to “lever.” If the steerperson is performing an une
at a rate of 25 rotations per minute and the radius of the circular movement is
2 feet, calculate

1. the angular speed measured in radians per minute

2. the linear speed of the hoe uli in miles per hour (round your answer to
two decimal places)

YouTube: https://www.youtube.com/watch?v=1A2UDMDE3Uc

Figure 1.2.36 A wa‘a (canoe) can change directions by rotating the hoe uli
(steering sweep) in a process known as une.

Solution.

1. We are given the angular speed is ω = 25 revolutions per minute. To
convert our angular speed to radians per minute, we use the fact that one
revolution is 2π radians to get

ω = 25revolution
minute = 25 rev

minute · 2π
radians

revolution = 50π
radians
minute

Thus the hoe uli is moving at an angular speed of 50π radians per second.

https://www.youtube.com/watch?v=1A2UDMDE3Uc
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2. Since the radius is r = 2 ft and the angular speed is 50π radians per
minute, we can use Definition 1.2.34 to calculate the linear speed

v = rω = 2ft · 50π
rad
min · mile

5280ft · 60min
hr ≈ 3.57miles

hour

Thus the steersperson is moving the hoe uli at a linear speed of 3.57 mph.

□

1.2.6 Exercises

Exercise Group. Given an angle, θ, identify the house and quadrant on the
Hawaiian Star Compass.

1. θ = 336◦

Answer. ‘Āina
Malanai

2. θ = 240◦

Answer. Nālani
Kona

3. θ = 35◦

Answer. Noio
Ko‘olau

4. θ = 221◦

Answer. Manu
Kona

5. θ = 108◦

Answer. Nā
Leo Ho‘olua

6. θ = 190◦

Answer. Lā
Kona

7. θ = 323◦

Answer. Noio
Malanai

8. θ = 158◦

Answer. ‘Āina
Ho‘olua

9. θ = 172◦

Answer. Lā
Ho‘olua

Exercise Group. Convert the given angle θ to a decimal in degrees rounded
to two decimal places.

10. θ = 20◦50′30′′

Answer. 20.84◦
11. θ = 80◦25′16′′

Answer. 80.42◦
12. θ = 7◦22′38′′

Answer. 7.38◦

13. θ = 330◦14′12′′

Answer. 330.24◦
14. θ = 168◦22′26′′

Answer. 168.37◦
15. θ = 49◦27′12′′

Answer. 49.45◦

16. θ = 327◦38′58′′

Answer. 327.65◦
17. θ = 281◦48′50′′

Answer. 281.81◦
18. θ = 134◦53′47′′

Answer. 134.90◦

19. Sirius, the brightest star in the night sky, has been known by various
names in different cultures and languages around the world. In Tahiti, it is
called Taurere and is considered a zenith star as it passes directly overhead.
Taurere has a declination of −16◦42′58′′, representing its angular distance
south of the celestial equator. Express Taurere’s declination as a decimal
rounded to two decimal places.
Answer. 16.72◦

Exercise Group. Recall the Star Compass with the boundaries for each
House. Write the angles for the boundaries between the following houses in the
Ko‘olau quadrant in terms of degrees, minutes, and seconds.
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20. Between Hikina and Lā (5.625◦)
Answer. 5◦37′30′′

21. Between Lā and ‘Āina (16.875◦)
Answer. 16◦52′30′′

22. Between ‘Āina and Noio (28.175◦)
Answer. 28◦7′30′′

23. Between Noio and Manu (39.375◦)
Answer. 39◦22′30′′

Exercise Group. Convert the given angle θ to degrees/minutes/seconds
rounded to the nearest second and identify the house and quadrant on the
Hawaiian Star Compass.

24. θ = 258.39◦

Answer. θ = 258◦23′28′′

Haka Malanai

25. θ = 212.43◦

Answer. θ = 212◦25′33′′

Noio Kona
26. θ = 244.97◦

Answer. θ = 244◦57′59′′ Nā
Leo Kona

27. θ = 93.95◦

Answer. θ = 93◦57′6′′ Haka
Ho‘olua

28. θ = 135.625◦

Answer. θ = 135◦37′30′′

Manu Ho‘olua

29. θ = 162.52◦

Answer. θ = 162◦59′56′′

Manu Ho‘olua
30. θ = 328.21◦

Answer. θ = 328◦12′9′′

Noio Malanai

31. θ = 48.12◦

Answer. θ = 48◦7′17′′

Manu Ko‘olau
32. θ = 241.27◦

Answer. θ = 241◦16′15′′ Nā
Lani Kona

Exercise Group. Convert the given angle θ to radians and identify the house
and quadrant on the Hawaiian Star Compass. Keep your answers in terms of π.
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33. θ = 102◦

Answer. θ = 17π
30 Haka

Ho‘olua

34. θ = 96◦

Answer. θ = 8π
15 ‘Ākau

35. θ = 190◦

Answer. θ = 19π
18 Lā Kona

36. θ = 122◦

Answer. θ = 61π
90 Nālani

Ho‘olua
37. θ = 32◦

Answer. θ = 8π
45 Noio

Ko‘olau

38. θ = 236◦

Answer. θ = 59π
45 Nālani

Kona
39. θ = 82◦

Answer. θ = 41π
90 Haka

Ko‘olau

40. θ = 228◦

Answer. θ = 19π
15 Manu

Kona
41. θ = 332◦

Answer. θ = 83π
45 ‘Āina

Ko‘olau

Exercise Group. Draw the angle in standard position.
42. 60◦

Answer.

x

y

43. 135◦

Answer.

x

y

44. −30◦

Answer.

x

y

45. 495◦

Answer.

x

y

46. −240◦

Answer.

x

y

47. 800◦

Answer.

x

y

48. π
4
Answer.

x

y

49. 5π
6

Answer.

x

y

50. − π
3

Answer.

x

y

51. 10π
3

Answer.

x

y

52. 11π
6

Answer.

x

y

53. − 2π
3

Answer.

x

y
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Exercise Group. Convert the given angle from degrees to radians. Round
your answer to two decimal places.

54. 27◦

Answer. 0.47
55. 63◦

Answer. 1.10
56. −39◦

Answer. −0.68
57. 200◦

Answer. 3.49
58. 415◦

Answer. 7.24
59. 105◦

Answer. 1.83

Exercise Group. Convert the given angle from radians to degrees. Round
your answer to two decimal places.

60. 3π
5

Answer. 108◦
61. 8π

3
Answer. 480◦

62. − 4π
7

Answer. −102.86◦

63. 15π
4

Answer. 675◦

64. −1.5
Answer. −85.94◦

65. 3
Answer. 171.89◦

Exercise Group. Determine whether the two given angles in standard
position are coterminal.

66. 50◦, 410◦

Answer. Yes
67. −60◦,

330◦

Answer. Yes

68. 30◦, 1110◦

Answer. No
69. −210◦,

150◦

Answer. Yes
70. −807◦,

93◦

Answer. No

71. −757◦,
683◦

Answer. Yes

Exercise Group. Find an angle between 0◦ and 360◦ that is coterminal with
the given angle

72. 405◦

Answer. 45◦
73. 600◦

Answer. 240◦
74. 1035◦

Answer. 315◦

75. −300◦

Answer. 60◦
76. 381◦

Answer. 21◦
77. −754◦

Answer. 326◦

Exercise Group. Given a circle with radius r, calculate (a) the length of the
arc subtended by a central angle θ; and (b) the area of a sector with central
angle θ. Round your answer to four decimal places.

78. r = 10 in, θ = 45◦

Answer.

(a) 7.8540 in;

(b) 39.2699 in2

79. r = 5 m, θ = 120◦

Answer.

(a) 2.0944 m;

(b) 26.1799 m2

80. r = 3 mi, θ = π
3 radians

Answer.

(a) 3.1416 mi;

(b) 4.7124 mi2

81. r = 8 cm, θ = 2 radians
Answer.

(a) 16 cm;

(b) 64 cm2

Exercise Group. At the start of this section, you learned that the latitude
of a place is the angle between a line drawn from the center of the earth to
that point and the equatorial plane. If the radius of the Earth is 3,959 miles,
calculate the arc length, s, along the surface of the earth for each value of θ:
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O

N

S

P

Q

Equatorθ s

82. θ = 1◦ of latitude (in miles, rounded to 2 decimals)
Answer. 69.10 miles

83. θ = 1′ of latitude (in miles, rounded to 2 decimals). A nautical
mile, frequently used in navigation, is slightly longer than a mile on
land. One nautical mile was historically defined to be the arc length
corresponding to one minute of latitude. Check your answer with the
value of one nautical mile.
Answer. 1.15 miles

84. θ = 1′′ of latitude (in feet, rounded to the nearest integer).
Answer. 101 feet

85. The oeoe, or Hawaiian bullroarer, is made by drilling holes into a kamani
seed or coconut shell, then threading a long string through the holes to
secure it. When the oeoe is swung by the string, a whistling sound is
produced, similar to the sound of the wind on the top of mountains. If
a girl is swinging an oeoe at the end of 3 foot long rope at a rate of 180
revolutions per minute, calculate
(a) The angular speed measured in radians per minute.

Answer. 360π radians/minute

(b) The linear speed of the shell in miles per hour (round to two decimal
places).

Answer. 38.56 miles/hour
86. Earth completes one rotation around the Sun approximately every 365.25

days. We will assume the orbit is a circle, and that the Earth is 92.9
million miles from the Sun.
(a) How far does the Earth travel in one day, expressed as millions of

miles?

Hint. First determine the angle or proportion of a rotation that
Earth travels in one day, then calculate the arc length of Earth’s
orbit.

Answer. 1.6 million miles
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(b) How for does the Earth travel in 30 days, expressed as millions of
miles?

Answer. 47.9 million miles

(c) How far does the Earth travel in one rotation around the sun, ex-
pressed as millions of miles?

Answer. 583.7 million miles

(d) What is the linear speed of Earth as it orbits the Sun? Express your
answer in miles per hour.

Answer. 66, 588 miles per hour
87. As the the moon orbits the Earth, different parts of its surface become

illuminated by the Sun which we call moon phases. The moon completes
one rotation about Earth in approximately 27.3 days. If we assume its
orbit is circular and the moon is 239,000 miles from Earth, calculate the
linear speed of the moon, expressed as miles per hour.
Answer. 2,292 miles per hour

88. At 17.7◦ S latitude, the city of Nadi, Fiji is 6, 071 km from the Earth’s
axis of rotation. In 24 hours, Nadi will have traveled one rotation around
Earth or 2π · (6, 071) km. The city of Port Vila, Vanuatu lies 967 km
directly to the west of Nadi, Fiji. As the Earth rotates, how many minutes
sooner will the people of Nadi see the Sun rise than the people in Port
Vila, rounded to one decimal?
Hint. The proportion of distance between the two cities to the distance
traveled in one rotation is the same as the proportion of the time it takes
to see the sun between the two cities to time it takes to complete one
rotation.
Answer. 36.5 minutes

89. In Example 1.2.30, we learned that wa‘a cannot sail directly into the wind.
For each of the following wa‘a and distance traveled, determine the area
of the sector that cannot be sailed? Recall that 1 house = 11.25◦. Round
your answer to the nearest square mile.

(a) Makali‘i sails for 25 miles and cannot sail within 4 houses from the
direction of the wind.

Answer. 491 square miles

(b) Alingano Maisu sails for 15 miles and cannot sail within 3 houses
from the direction of the wind.

Answer. 133 square miles
90. Navigating by the Sun: Using Solar Declination and Rising Sun

to Orient on a Canoe. The position of the rising or setting sun changes
throughout the year. Solar declination (denoted as δ) is the angle
between the direction where the Sun rises (or sets) and due east (or due
west) on the horizon. It represents how far north or south the Sun is from
the celestial equator, projected onto the Earth’s equatorial plane. Solar
declinations to the north are positive, while those to the south are negative.
At the Equinoxes (around March 20th and September 22nd), the solar
declination is 0◦ (δ = 0◦), as the Sun is directly above the equator. During
the December solstice, around December 22, the Sun rises from its most
southern position, 23.5 degrees south of due east (δ = −23.5◦), and during



CHAPTER 1. TRIGONOMETRY 31

the June solstice, around June 22, the Sun rises from its most northern
position, 23.5 degrees north of due east (δ = 23.5◦).

A navigator can use their knowledge of the rising sun to help orient
themselves. For example, on May 22, the solar declination is δ = 20◦16′. If
the navigator identifies where the Sun rises on the equinox, she can measure
20◦16′ south to identify East and can then orient herself accordingly.

(a) What is the azimuth of the sun?

Answer. 69◦44′

(b) What house is the sun rising in?

Answer. ‘Āina Ko‘olau

(c) What house does the sun set in?

Hint. Celestial bodies rise and set in the same house but different
quadrants.

Answer. ‘Āina Ho‘olua

(d) If the canoe is sailing with the rising sun on the port side (left) and
the navigator measures the angle between the direction of the canoe
and the sun as being 90◦, what is the heading of the canoe?

Answer. 159◦44′

(e) What house is the canoe sailing in?

Answer. Nā Leo Malanai
91. Swells are one of the most consistent navigational tools used to keep on

a course because they can remain constant over time. On 27 May 2023,
while sailing on the vaka Paikea from Rarotonga to Apia, you finished
your shift and are ready to take a nap. Before you lay down, you take
note that the canoe has a heading of 310◦ and the swells are coming from
the southwest (Manu Kona) and hitting the canoe at 5◦ above directly
left of the canoe. When you wake, you noticed the swells are now hitting
the canoe from 25◦ to the left of your heading. You are aware that the
swells couldn’t have changed this fast and conclude that while you were
asleep, the canoe changed its heading. Assuming the swell was constant,
determine your new heading.
Hint.

(a) Start by drawing a diagram that represents the heading of the canoe
before the nap. Mark the initial heading as ◦>.

(b) Next, draw the direction of the swells with respect to the canoe on
the same diagram. The swells are coming from the southeast (Manu
Kona) and hitting the canoe at ◦> above straight from the left of
the canoe.

(c) Now, draw another diagram of the swells and the canoe, but this
time, represent the swells hitting the canoe from ◦> to the left of
straight in front (Nā Leo Ho‘olua).

(d) Observe that the swells couldn’t have changed direction so fast while
you were asleep. Thus, the change in the direction of the swells must
be due to the canoe changing its heading.
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(e) Use the relationship between the angle of the swell and the angle
between the swell and the canoe to determine the angle by which
the canoe’s heading changed.

(f) Finally, update the initial heading of 310 degrees with the angle of
change to find the new heading of the canoe after the nap.

Answer. 250◦

92. After spending 6 weeks in Samoa, vaka Paikea is making his way back
from Apia to Rarotonga. On July 14, 2023, the canoe is sailing with a
heading of 50◦, and the wind is coming to the canoe from 60◦ to the right
of the your heading. What is the heading and house from which the wind
is coming?
Answer. 110◦; ‘Āina Malanai
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1.3 Unit Circle
In this section, we will introduce the trigonometric functions using the Unit
Circle.

1.3.1 Unit Circle
Definition 1.3.1 Unit Circe. The unit circle is a circle whose radius is
1 and whose center is at the origin of a rectangular plane (or xy-plane). The
equation for the unit circle is

x2 + y2 = 1

♢
Let t be a real number. Recall from Definition 1.2.18 that a radian measure

of a central angle, t, is defined as the ratio of the arc length s to the radius r.
In other words, t = s

r . In the unit circle, the radius is r = 1, and the angle
in radians is equal to the arc length, t = s. We will let t be in radians. The
circumference of the unit circle is 2πr = 2π · 1 = 2π.

x

y

t

s = t

If t ≥ 0, we can imagine wrapping a line around the unit circle, marking off
a distance of t in a counterclockwise direction, and labeling that point P (x, y),
whic becomes the terminal point. If t < 0 then we would wrap in a clockwise
direction.
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x

y

P (x, y) t

t

If t > 2π or t < −2π, then the length is longer than the circumference of
the unit circle and you will need to travel around the unit circle more than once
before arrive at the point P (x, y). Therefore, we can conclude that regardless
of the value of t, we have a unique point P (x, y) that lies on the unit circle. We
call P (x, y) the point on the unit circle that corresponds to t.

1.3.2 Trigonometric Functions
The x- and y-coordinates for P (x, y) can then be used to define the six trigono-
metric functions of a real number t:

sine cosine tangent cosecant secant cotangent

which are abbreviated as sin, cos, tan, csc, sec, and cot, respectively.

Definition 1.3.2 Definition of Trigonometric Functions. Let t be any
real number and let P (x, y) be the terminal point on the unit circle associated
with t. Then

sin t = y cos t = x tan t = y

x
, (x ̸= 0)

csc t = 1
y

, (y ̸= 0) sec t = 1
x

, (x ̸= 0) cot t = x

y
, (y ̸= 0)
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x

y

1

cos t

sin t

P (x, y)

t

t

Notice that tan t and sec t re undefined when x = 0 and csc t and cot t are
undefined when y = 0. ♢

Example 1.3.3 Let t be the angle that corresponds to the point P (
√

3
2 , − 1

2 ).
Find the exact values of the six trigonometric functions corresponding to t:
sin t, cos t, tan t, csc t, sec t, cot t.
Solution. The point P (

√
3

2 , − 1
2 ) gives us x =

√
3

2 and y = − 1
2 . Then we have

sin θ = y = −1
2 , csc θ = 1

y
= 1

− 1
2

= −2,

cos θ = x =
√

3
2 , sec θ = 1

x
= 1

√
3

2

= 2√
3

= 2
√

3
3 ,

tan θ = y

x
=

− 1
2√
3

2

= − 1√
3

= −
√

3
3 , cot θ = x

y
=

√
3

2
− 1

2
= −

√
3.

□

1.3.3 Trigonometric Functions of an Angle
Definition 1.3.4 Trigonometric Functions of an Angle. If θ is an angle
with radian measure t, then the six trigonometric functions become

sin θ = y cos θ = x tan θ = y

x
, (x ̸= 0)

csc θ = 1
y

, (y ̸= 0) sec θ = 1
x

, (x ̸= 0) cot θ = x

y
, (y ̸= 0)

♢

Example 1.3.5 Find the exact values of the six trigonometric functions for
1. θ = 0
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2. θ = 3π

2
3. θ = 5π

Solution.
1. When θ = 0 radians (0◦), the point on the circle is P (1, 0).

x

y

P(1,0)

Then x = 1 and y = 0 gives us

sin 0 = sin 0◦ = 0, csc 0 = csc 0◦ = undefined,

cos 0 = cos 0◦ = 1, sec 0 = sec 0◦ = 1,

tan 0 = tan 0◦ = 0, cot 0 = cot 0◦ = undefined.

2. When θ = 3π
2 radians (270◦), the point on the circle is P (0, −1).

x

y

P(0,-1)

Then x = 0 and y = −1 gives us

sin 3π

2 = sin 270◦ = −1, csc 3π

2 = csc 270◦ = −1,

cos 3π

2 = cos 270◦ = 0, sec 3π

2 = sec 270◦ = undefined,

tan 3π

2 = tan 270◦ = undefined, cot 3π

2 = cot 270◦ = 0

3. Since θ = 5π > 2π, our angle is greater than one full rotation of a circle.
We first subtract θ by one rotation, 2π, to get

5π − 2π− = 3π
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Once again, since we have completed more than one full rotation, we can
repeat the previous step:

3π − 2π = π

The values of the six trigonometric functions when θ = 5π are equal to
those when θ = π. Notice that 5π and π are coterminal angles, both
ending at the pointP (−1, 0).

x

y

P(-1,0)

Since x = −1 and y = 0 we have

sin 5π = 0, cos 5π = −1, tan 5π = 0,

csc 5π = undefined, sec 5π = −1, cot 5π = undefined.

□

Example 1.3.6 Finding the Exact Values of the Trigonometric Func-
tions for θ = 45◦. Find the exact values of the six trigonometric functions for
θ = 45◦.
Solution. We begin by drawing a right triangle with a base angle of 45◦ in
the unit circle.

x

y

1

x

y

P (x, y)

45◦

y = x

Since the first quadrant has 90◦, at θ = 45◦, the point P lies on the line
that bisects the first quadrant. This means the point P is on the line y = x.
Since P (x, y) also lies on the unit circle, whose equation is x2 + y2 = 1, we get

x2 + y2 = 1
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x2 + x2 = 1 (since y = x)
2x2 = 1

x2 = 1
2

x = 1√
2

y = 1√
2

(since y = x)

Then

sin 45◦ = 1√
2

=
√

2
2 csc 45◦ = 1

√
2

2

=
√

2

cos 45◦ = 1√
2

=
√

2
2 sec 45◦ = 1

√
2

2

=
√

2

tan 45◦ =
√

2
2√
2

2

= 1 cot 45◦ =
√

2
2√
2

2

= 1

□

Example 1.3.7 Finding the Exact Values of the Trigonometric Func-
tions for θ = 30◦. Find the exact values of the six trigonometric functions for
θ = 30◦.
Solution. First, we will draw a triangle in a circle with an angle of 30◦ and a
second triangle with an angle of −30◦ .

x

y

1

1

x

y

y

P (x, y)

30◦

This gives us two 30-60-90 triangles. Notice this now gives us one larger
triangle whose angles are all 60◦. Thus we have an equilateral triangle, with
each side of length 1.
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1

1

x

y

y

P (x, y)

30◦

30◦

60◦

60◦

1

1

1 = 2y

P (x, y)

60◦

60◦

60◦

We see that 1 = 2y so y = 1
2 . Then by the Pythagorean Theorem,

x2 + y2 = 12

x2 +
(

1
2

)2
= 1

x2 + 1
4 = 1

x2 = 3
4

x =
√

3
2

Giving us the following triangle

x

y

1

√
3

2

1
2

P (x, y) = P
( √

3
2 , 1

2

)

30◦

60◦

Then

sin 30◦ = 1
2 , csc 30◦ = 1

1
2

= 2,

cos 30◦ =
√

3
2 , sec 30◦ = 1

√
3

2

= 2√
3

= 2
√

3
3 ,
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tan 30◦ =
1
2√
3

2

= 1√
3

=
√

3
3 , cot 30◦ =

√
3

2
1
2

=
√

3.

□

Remark 1.3.8 Finding the Exact Values of the Trigonometric Func-
tions for θ = 90◦. Similarly, we can get the following for θ = 60◦.

x

y

1 1

1
2

1
2

√
3

2

P (x, y) = P
(

1
2 ,

√
3

2

)

60◦ 60◦

30◦ 30◦

We now summarize what we know about the six trigonometric functions for
special angles. Note the trigonometric functions for θ = π

2 and θ = π
3 are left

as exercises.
Table 1.3.9 Trigonometric functions for special angles

θ (deg) θ (rad) sin θ cos θ tan θ csc θ sec θ cot θ

0◦ 0 0 1 0 undef 1 undef

30◦ π

6
1
2

√
3

2

√
3

3 2 2
√

3
3

√
3

45◦ π

4

√
2

2

√
2

2 1
√

2
√

2 1

60◦ π

3

√
3

2
1
2

√
3 2

√
3

3 2
√

3
3

90◦ π

2 1 0 undef 1 undef 0

1.3.4 Symmetry on the Unit Circle
If the point P (x, y) lies on the unit circle, the following symmetric points also
lie on the unit circle:

1. Q(−x, y): Symmetry about the y-axis.

2. R(−x, −y): Symmetry about the origin.
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3. S(x, −y): Symmetry about the x-axis.

This symmetry within the unit circle resembles the pattern observed in
the Star Compass. When a star emerges in the eastern sky, it will eventually
descend and set in the corresponding house of the western sky. For instance,
if a star rises above the horizon in the Nālani house of the Ko‘olau quadrant
(northeast), it will journey across the sky and set in the equivalent house within
the Ho‘olua quadrant (northwest). This similarity aligns with the symmetry
between points P (x, y) and Q(−x, y). Additionally, if an ocean swell or wind
originates from the Nālani house in the Malanai quadrant (southeast), it will
pass the wa‘a and exit in the opposite direction toward the Ho‘olua quadrant
(northwest), still within the Nālani house. This mirrors the symmetry between
points S(x, −y) and Q(−x, y).

x

y

P (x, y)Q(−x, y)

R(−x, −y) S(x, −y)

H
ikina

K
om

oh
an

a

Hema

‘Ākau
NālaniNālani

Nālani Nālani

A fourth form of symmetry involves reflecting points across the diagonal
line y = x, where the x- and y-values are equal.

1. T (y, x): Symmetry about the line y = x. This is accomplished by
interchanging the x- and y-values.

x

y
P (x, y)

T (y, x)

Notice on the Unit Circle that the radius extending from the center at an angle
of 30◦ to the point T (x, y) =

(
1
2 ,

√
3

2

)
is symmetric about the line y = x, in

relation to the radius extending from the center at an angle of 60◦ to the point
P (x, y).
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x

y

P (x, y) =
(

1
2 ,

√
3

2

)

T (x, y) =
( √

3
2 , 1

2

)

30◦

60◦

Using symmetry about the x-axis, symmetry about the y-axis, and symmetry
about the origin, we can complete the unit circle, as long as we remember
that the x-values in Quadrants II and III are negative while the y-values in
Quadrants III and IV are negative.

x

y

π
4

π
2

3π
4

π

5π
4

3π
2

7π
4

2π

( √
2

2 ,
√

2
2

)(
−

√
2

2 ,
√

2
2

)

(
−

√
2

2 , −
√

2
2

) ( √
2

2 , −
√

2
2

)

(−1, 0) (1, 0)

(0, −1)

(0, 1)

x

y

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

2π

( √
3

2 , 1
2

)

(
1
2 ,

√
3

2

)

(
−

√
3

2 , 1
2

)

(
− 1

2 ,
√

3
2

)

(
−

√
3

2 , − 1
2

)

(
− 1

2 , −
√

3
2

)

( √
3

2 , − 1
2

)

(
1
2 , −

√
3

2

)

(−1, 0) (1, 0)

(0, −1)

(0, 1)

Finally, we tie everything together and look at the entire Unit Circle. At
first glance it may seem intimidating, however, similar to the Star Compass,
there is a lot of symmetry (x-axis, y-axis, origin, about the line y = x) and it
can help by focusing on one quadrant, and use symmetry to fill out the rest of
the circle.
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x

y

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

0◦, 360◦

45◦135◦

225◦ 315◦

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

( √
3

2 , 1
2

)
( √

2
2 ,

√
2

2

)
(

1
2 ,

√
3

2

)

(
−

√
3

2 , 1
2

)
(

−
√

2
2 ,

√
2

2

)
(

− 1
2 ,

√
3

2

)

(
−

√
3

2 , − 1
2

)
(

−
√

2
2 , −

√
2

2

)
(

− 1
2 , −

√
3

2

)

( √
3

2 , − 1
2

)
( √

2
2 , −

√
2

2

)
(

1
2 , −

√
3

2

)

(−1, 0) (1, 0)

(0, −1)

(0, 1)

Figure 1.3.10 The Unit Circle for common angles in radians and degrees.

1.3.5 Trigonometric Functions on a Circle with Radius r

Until now, computing the exact values of trigonometric functions of an angle
θ required us to locate the corresponding point P (x, y) on the unit circle.
However, we can use any circle with center at the origin, that is, any circle of
the form x2 + y2 = r2, where r > 0 is the radius. Note that if r = 1, then it is
the unit circle.
Theorem 1.3.11 For an angle θ in standard position, let P (x, y) be the point
on the terminal side of θ that is also on the circle x2 + y2 = r2. Then

sin θ = y

r
cos θ = x

r
tan θ = y

x
, (x ̸= 0)

csc θ = r

y
, (y ̸= 0) sec θ = r

x
, (x ̸= 0) cot θ = x

y
, (y ̸= 0)

1.3.6 Exercises

Exercise Group. Verify algebraically that the point P is on the unit circle
(x2 + y2 = 1)

1. P
( 3

5 , − 4
5
)

Answer.
( 3

5
)2+(

− 4
5
)2 = 1

2. P
(

−
√

39
8 , − 5

8

)
Answer.

(
−

√
39
8

)2
+(

− 5
8
)2 = 1

3. P
(

−
√

55
8 , 3

8

)
Answer.

(
−

√
55
8

)2
+( 3

8
)2 = 1
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4. P
(

− 2
3 ,

√
5

3

)
Answer.

(
− 2

3
)2+( √

5
3

)2
= 1

5. P
(

3
4 ,

√
7

4

)
Answer.

( 3
4
)2+( √

7
4

)2
= 1

6. P
( √

21
5 , − 2

5

)
Answer.

( √
21
5

)2
+(

− 2
5
)2 = 1

Exercise Group. Let the point P be on the unit circle. Given the quadrant
that P lies in, determine the missing coordinate, a

7. III; P
(
− 2

3 , a
)

Answer. −
√

5
3

8. IV; P
( 5

8 , a
)

Answer. −
√

39
8

9. III; P
(
a, − 2

5
)

Answer. −
√

21
5

10. II; P
(
a, 4

9
)

Answer. −
√

65
9

Exercise Group. Given an angle θ that corresponds to the point P on the
unit circle, determine the coordinates of the point P (x, y).

11. θ = π
2

Answer. (0, 1)
12. θ = π

Answer. (−1, 0)
13. θ = 5π

3

Answer.
(

1
2 , −

√
3

2

)14. θ = 4π
3

Answer.
(

− 1
2 , −

√
3

2

)
15. θ = − π

4

Answer.
( √

2
2 , −

√
2

2

)16. θ = 5π
6

Answer.
(

−
√

3
2 , 1

2

)17. θ = 315◦

Answer.
( √

2
2 , −

√
2

2

)18. θ = 720◦

Answer. (1, 0)

19. θ = 60◦

Answer.
(

1
2 ,

√
3

2

)20. θ = −180◦

Answer. (−1, 0)
21. θ = 210◦

Answer.
(

−
√

3
2 , − 1

2

)22. θ = 120◦

Answer.
(

− 1
2 ,

√
3

2

)
Exercise Group. For each angle θ in Exercises 1.3.6.11–22, find the exact
values of the six trigonometric functions. If any are not defined, say “undefined.”

23. θ = π
2

Answer. sin π
2 =

1; cos π
2 = 0;

tan π
2 is

undefined;
csc π

2 = 1; sec π
2

is undefined;
cot π

2 = 0

24. θ = π

Answer. sin π =
0; cos π = −1;
tan π = 0; csc π
is undefined;
sec π = −1; cot π
is undefined

25. θ = 5π
3

Answer. sin 5π
3 =

−
√

3
2 ; cos 5π

3 = 1
2 ;

tan 5π
3 = −

√
3;

csc 5π
3 = − 2

√
3

3 ;
sec 5π

3 = 2;
cot 5π

3 = −
√

3
3

26. θ = 4π
3

Answer. sin 4π
3 =

−
√

3
2 ;

cos 4π
3 = − 1

2 ;
tan 4π

3 =
√

3;
csc 4π

3 = − 2
√

3
3 ;

sec 4π
3 = −2;

cot 4π
3 =

√
3

3

27. θ = − π
4

Answer. sin
(
− π

4
)

=
−

√
2

2 ;
cos

(
− π

4
)

=
√

2
2 ;

tan
(
− π

4
)

= −1;
csc

(
− π

4
)

= −
√

2;
sec

(
− π

4
)

=
√

2;
cot

(
− π

4
)

= −1

28. θ = 5π
6

Answer. sin 5π
6 =

1
2 ; cos 5π

6 = −
√

3
2 ;

tan 5π
6 = −

√
3

3 ;
csc 5π

6 = 2;
sec 5π

6 = − 2
√

3
3 ;

cot 5π
6 = −

√
3
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29. θ = 315◦

Answer. sin 315◦ =
−

√
2

2 ;
cos 315◦ =

√
2

2 ;
tan 315◦ = −1;
csc 315◦ = −

√
2;

sec 315◦ =
√

2;
cot 315◦ = −1

30. θ = 720◦

Answer. sin 720◦ =
0; cos 720◦ = 1;
tan 720◦ = 0;
csc 720◦ is
undefined;
sec 720◦ = 1;
cot 720◦ is
undefined

31. θ = 60◦

Answer. sin 60◦ =√
3

2 ; cos 60◦ = 1
2 ;

tan 60◦ =
√

3;
csc 60◦ = 2

√
3

3 ;
sec 60◦ = 2;
cot 60◦ =

√
3

3

32. θ = −180◦

Answer. sin(−180◦) =
0; cos(−180◦) =
−1;
tan(−180◦) = 0;
csc(−180◦) is
undefined;
sec(−180◦) =
−1; cot(−180◦)
is undefined

33. θ = 210◦

Answer. sin 210◦ =
− 1

2 ;
cos 210◦ = −

√
3

2 ;
tan 210◦ =

√
3

3 ;
csc 210◦ = −2;
sec 210◦ = − 2

√
3

3 ;
cot 210◦ =

√
3

34. θ = 120◦

Answer. sin 120◦ =√
3

2 ;
cos 120◦ = − 1

2 ;
tan 120◦ = −

√
3;

csc 120◦ = 2
√

3
3 ;

sec 120◦ = −2;
cot 120◦ = −

√
3

3

Exercise Group. Let θ be the angle that corresponds to the point P .
Exercises 1.3.6.1–6 verified P is on the unit circle. Find the exact values of the
six trigonometric functions of θ.

35. P
( 3

5 , − 4
5
)

Answer. sin θ =
− 4

5 ; cos θ = 3
5 ;

tan θ = − 4
3 ;

csc θ = − 5
4 ;

sec θ = 5
3 ;

cot θ = − 3
4

36. P
(

−
√

39
8 , − 5

8

)
Answer. sin θ =
− 5

8 ;
cos θ = −

√
39
8 ;

tan θ = 5
√

39
39 ;

csc θ = − 8
5 ;

sec θ = − 8
√

39
39 ;

cot θ =
√

39
5

37. P
(

−
√

55
8 , 3

8

)
Answer. sin θ =
3
8 ; cos θ = −

√
55
8 ;

tan θ = − 3
√

55
55 ;

csc θ = 8
3 ;

sec θ = − 8
√

55
55 ;

cot θ = −
√

55
3

38. P
(

− 2
3 ,

√
5

3

)
Answer. sin θ =√

5
3 ; cos θ = − 2

3 ;
tan θ = −

√
5

2 ;
csc θ = 3

√
5

5 ;
sec θ = − 3

2 ;
cot θ = − 2

√
5

5

39. P
(

3
4 ,

√
7

4

)
Answer. sin θ =√

7
4 ; cos θ = 3

4 ;
tan θ =

√
7

3 ;
csc θ = 4

√
7

7 ;
sec θ = 4

3 ;
cot θ = 3

√
7

7

40. P
( √

21
5 , − 2

5

)
Answer. sin θ =
− 2

5 ; cos θ =
√

21
5 ;

tan θ = − 2
√

21
21 ;

csc θ = − 5
2 ;

sec θ = 5
√

21
21 ;

cot θ = −
√

21
2

Exercise Group. Find the exact value of each expression.
41. sin 30◦ + sin 150◦

Answer. 1
42. cos 30◦ + cos 150◦

Answer. 0
43. sin 60◦ + sin 120◦ + sin 240◦ + sin 300◦

Answer. 0
44. cos 60◦ + cos 120◦ + cos 240◦ + cos 300◦

Answer. 0
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45. tan 45◦ + tan 135◦

Answer. 0
46. tan 135◦ + tan 225◦

Answer. 0
47. tan 225◦ + tan 315◦

Answer. 0
48. tan 45◦ + tan 225◦

Answer. 2
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1.4 Right Triangle Trigonometry

start

end

actual course

reference course

deviation
1 House

During a voyage, a navigator utilizes a reference course —a line connecting
the starting point and destination—to monitor their position. When the wa‘a
(canoe) encounters winds that veer it off course, the navigator mentally plots
their position relative to the reference course. To ensure the destination isn’t
missed, navigators must monitor their deviation from the intended course,
involving measurement of the angle of deviation from the reference course (in
units of houses) and determining the distance traveled. This section explores
the calculation of trigonometric functions using right triangles, enabling us to
assess how much the wa‘a has strayed from its intended reference course.

1.4.1 Trigonometric Ratios
Definition 1.4.1 Trigonometric Ratios. Consider a right triangle with θ
as one of its acute angles. The trigonometric ratios are defined as follows:

adjacent

hypoten
use

op
po

sit
e

θ

sin θ = opposite
hypotenuse cos θ = adjacent

hypotenuse tan θ = opposite
adjacent

csc θ = hypotenuse
opposite sec θ = hypotenuse

adjacent cot θ = adjacent
opposite

A common mnemonic for remembering these relationships is SOHCAHTOA,
formed from the first letters of “S ine is Opposite over Hypotenuse, Cosine is
Adjacent over Hypotenuse, Tangent is Opposite over Adjacent.” ♢

Based on the definition of the six trigonometric functions, we have the
following trigonometric identities.

Definition 1.4.2 Reciprocal Identities.

sin θ = 1
csc θ

cos θ = 1
sec θ

tan θ = 1
cot θ

csc θ = 1
sin θ

sec θ = 1
cos θ

cot θ = 1
tan θ

♢
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Definition 1.4.3 Quotient Identities.

tan θ = sin θ

cos θ
cot θ = cos θ

sin θ

♢

Example 1.4.4 Find the exact values of the six trigonometric ratios of the
angle θ in the given triangle.

4

5 3

θ

Solution. By the definition of the trigonometric ratios, we have

sin θ = 3
5 cos θ = 4

5 tan θ = 3
4

csc θ = 5
3 sec θ = 5

4 cot θ = 4
3

□

Example 1.4.5 Find the exact values of the six trigonometric ratios of the
angle θ in the given triangle.

5

2

θ

Solution. Notice that θ is in a different position. Here, the adjacent side is 3
and the opposite side is 5. If we let h denote the hypotenuse, then we can use
the Pythagorean Theorem to get

h =
√

52 + 22 =
√

29

Then by the definition of the trigonometric ratios, we have

sin θ = 5√
29

= 5
√

29
29 cos θ = 2√

29
= 2

√
29

29 tan θ = 5
2

csc θ =
√

29
5 sec θ =

√
29
2 cot θ = 2

5

□



CHAPTER 1. TRIGONOMETRY 49

1.4.2 Special Triangles
The angles 30◦, 45◦, 60◦ ( π

6 , π
4 , π

3 ) give special values for trigonometric functions.
The following figures are used to calculate trigonometric values.

1

1

√
2

45◦

45◦

1

1
2

1
2

1√
3

2

60◦ 60◦

30◦ 30◦

The trigonometric values for the special angles 0, 30◦, 45◦, 60◦, 90◦ (
0, π

6 , π
4 , π

3 , π
2

)
are given in Table 1.4.6.

Table 1.4.6 Values of the trigonometric functions in Quadrant I

θ θ sin θ cos θ tan θ

(degrees) (radians)

0◦ 0 0 1 0

30◦ π

6
1
2

√
3

2

√
3

3

45◦ π

4

√
2

2

√
2

2 1

60◦ π

3

√
3

2
1
2

√
3

90◦ π

2 1 0 undefined

1.4.3 Cofunctions
The symmetry between sin θ and cos θ becomes evident when reversing the order
of sine and cosine values from 90◦ to 0◦. This symmetry yields sin 0◦ = cos 90◦,
sin 30◦ = cos 60◦, sin 45◦ = cos 45◦, sin 60◦ = cos 30◦, and sin 90◦ = cos 0◦.

This pattern between sine and cosine is no coincidence; it emerges because
the three angles in a triangle add up to 180◦ or π radians. When considering
a right triangle, the remaining two angles combine to form 90◦ or π

2 radians,
making them complementary angles.
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b

c
a

α

β

Consider the right triangle in the figure above, where angles α and β are
complementary angles. Side ais opposite of angle α, and side b is opposite of
angle β. Notice that we can also describe side b as adjacent to angle α and side
a as adjacent to angle β. Therefore,

sin α = opposite
hypotenuse = a

c
and cos β = adjacent

hypotenuse = a

c

Thus we can conclude that

sin α = a

c
= cos β

Sine and cosine are called cofunctions because of this relationship be-
tween these functions and their complementary angles. We can obtain similar
relationships for all trigonometric functions:

sin α = a

c
= cos β cos α = b

c
= sin β tan α = a

b
= cot β

csc α = c

a
= sec β sec α = c

b
= csc β cot α = b

a
= tan β

Since α and β are complementary angles, α + β = 90◦. Rearranging, we get
β = 90◦ − α. Substituting this into our cofunctions and replacing α with θ, we
get our cofunction identities.

Definition 1.4.7 Cofunction Identities. The cofunction identities in
degrees are

sin θ = cos(90◦ − θ) cos θ = sin(90◦ − θ) tan θ = cot(90◦ − θ)
csc θ = sec(90◦ − θ) sec θ = csc(90◦ − θ) cot θ = tan(90◦ − θ)

The cofunction identities in radians are

sin θ = cos
(π

2 − θ
)

cos θ = sin
(π

2 − θ
)

tan θ = cot
(π

2 − θ
)

csc θ = sec
(π

2 − θ
)

sec θ = csc
(π

2 − θ
)

cot θ = tan
(π

2 − θ
)

♢

Example 1.4.8 The Cofunction Identities explains the symmetry in Table 1.4.6
.

sin 0◦ = cos(90◦ − 0◦) = cos 90◦ sin 60◦ = cos(90◦ − 60◦) = cos 30◦

sin 30◦ = cos(90◦ − 30◦) = cos 60◦ sin 90◦ = cos(90◦ − 90◦) = cos 0◦

sin 45◦ = cos(90◦ − 45◦) = cos 45◦

□
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Remark 1.4.9 Patterns in the Trigonometric Table. Learning the values
of the trigonometric functions in this table can increase your confidence and
efficiency in trigonometry. To help remember the values of sine and cosine, we
utilize cofunctions and also write them in the form

√
·/2

θ θ sin θ cos θ

0 0◦ √
0/2

√
4/2

π/6 30◦ √
1/2

√
3/2

π/4 45◦ √
2/2

√
2/2

π/3 60◦ √
3/2

√
1/2

π/2 90◦ √
4/2

√
0/2

which simplifies to the values in Table 1.4.6.

1.4.4 Using a Calculator
Sometimes you may encounter an angle other than the special angles described
above. In this case, you will have to use a calculator.

First, be sure that your angle is either in degrees or radians, depending on
the problem, refer to your calculator’s manual for instructions. Most calculators
will have a special button for the sine, cosine, and tangent functions. Depending
on your calculator, you may see the following keys for

Function Calculator Key

sine SIN
cosine COS
tangent TAN

To calculate cosecant, secant, and cotangent, you will need to use the identity

csc θ = 1
sin θ

, sec θ = 1
cos θ

, cot θ = 1
tan θ

Answers produced by calculators are estimates and you should pay close
attention to see if the question is asking for the exact solution or a decimal
approximation. For example, if you need to calculate sin 45◦ =

√
2

2 , the
calculator may give the answer as sin 45◦ ≈ 0.70710678, which is a decimal
approximation since the actual solution goes on forever. Unless stated otherwise,
answers in the book should be exact, e.g.

√
2

2 and not 0.70710678.

Example 1.4.10 Use a calculator to evaluate
1. sin 22◦

2. cos 5◦

3. cot 53◦

4. cos 5 rad

Solution. Before proceeding, we confirm that our calculator is set to either
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degree or radian mode. Additionally, for the sake of simplicity, we will round
our answers to four decimal places.

1. Input: SIN (22); Output: 0.3746

2. Input: COS (5); Output: 0.9962

3. Since most calculators do not have a key for cotangent, we Input: (1/ TAN
(53)); Output: 1

1.3270 ≈ 0.7536

4. Since this problem uses radians, we must change the mode on our calcu-
lator then Input: COS (5); Output: 0.2837.

Observe that cos 5◦ ̸= cos 5 rad. This emphasizes the significance of verifying
whether your calculator is in degree or radian mode. □

1.4.5 Solving Right Triangles

b

c
a

α

β

Consider the following right triangle where side a is opposite angle α, side b is
opposite angle β, and side c is the hypotenuse. Since α and β are complementary
angles, we have

α + β = 90◦

Additionally, by the Pythagorean Theorem, we have

a2 + b2 = c2

Definition 1.4.11 To solve a triangle is the process of determining the values
for all three lengths of its sides and the measures of all three angles, based on
provided information about the triangle. ♢

Remark 1.4.12 Solving Right Triangles. In solving a right triangle, the
following relationships are useful:

α + β = 90◦, a2 + b2 = c2

Example 1.4.13 Solve the right triangle. Round your answer to two decimal
places.
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16

c
a

50◦

β

Solution. Given that this is a right triangle, we already know one angle is
90◦, and we have an additional angle of50◦ along with an adjacent side length
of 16. To solve this triangle, we need to determine the values of sides a, c, and
β. We begin by finding the measure of angle β. Since 50◦ + β = 90◦ we have

β = 90◦ − 50◦ = 40◦

Next, we will solve for side a. Using the angle 50◦, where the adjacent side
is 16 and side a is the side opposite to the angle, we can apply the tangent
function, which relates the opposite and adjacent sides:

tan 50◦ = a

16

Multiplying both sides by 16 we get

a = 16 · tan 50◦ ≈ 19.07

Using the Pythagorean Theorem, we get

c2 = 162 + 19.072 ≈ 619.66

Thus
c ≈

√
619.66 ≈ 24.89

□

1.4.6 Solving Applied Problems
Example 1.4.14 Deviation. We are now ready to calculate the deviation
example proposed at the start of this section. In an average day of sailing, a
wa‘a sails for 120 nautical miles (NM). If Hikianalia is supposed to sail in the
direction of Hikina (East), but currents have deviated her course by one house
so she actually sailed in the house Lā, how far off the course has Hikianalia
deviated?
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start

end

actual course

reference course

deviation
1 House

Solution. From the Star Compass (Figure 1.1.4), the house Lā is one house
(11.25◦) from Hikina. If we let y denote the distance deviated from the reference
course, our right triangle becomes:

start

end

120 NM
y

11.25◦

Since we know the hypotenuse of the triangle and want to find the side
opposite of the angle, we will use the sine function:

sin 11.25◦ = opposite
hypotenuse = y

120 NM

multiplying both sides by 120, we get

y = 120 · sin 11.25◦ NM ≈ 23.4 NM

So Hikianalia has deviated 23.4 nautical miles north from the reference
course. □

Example 1.4.15 Solar panels. Solar panels harness the sun’s energy to
generate electricity, and for optimal energy output, they should be oriented
perpendicularly to the sun’s light. The sun’s angle of elevation varies based on
latitude, and in Hawai‘i, for instance, south-facing solar panels are recommended
to have a pitch of 21◦ to align with the sun’s rays. When installing a solar panel,
determining its pitch might pose challenges. Instead of measuring the angle
directly, an alternative approach involves measuring the height of the panel’s
top. What height should a south-facing solar panel, measuring 65 inches in
length, be installed at to achieve the desired angle of 21◦? Round your answer
to the nearest tenth of an inch.

Solar PanelH
ei

gh
t

Sun’s rays

Angle of
elevation of
Sun

Pitch angle

Solution. We begin by drawing the triangle.
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65 in

H
ei

gh
t

21◦

Since we know the desired angle of pitch of the solar panel and the length
of the panel, we can set up the following equation

sin 21◦ = opposite
hypotenuse = height

65 in
height = 65 in · sin 21◦ ≈ 23.3 in

Thus, when installing a solar panel in Hawai‘i, the top of the solar panel
should be positioned 23.3 inches above the bottom to optimize energy output.

□

1.4.7 Exercises

Exercise Group. Find the exact values of the six trigonometric functions of
the angle θ in each triangle.

1.

3

5 4

θ

Answer. sin θ = 4
5 ,

cos θ = 3
5 , tan θ = 4

3 ,
csc θ = 5

4 , sec θ = 5
3 , cot θ = 3

4

2.

5

√
74

7

θ

Answer. sin θ = 5
√

74
74 ,

cos θ = 7
√

74
74 , tan θ = 5

7 ,
csc θ =

√
74
5 , sec θ =

√
74
7 ,

cot θ = 7
5
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3.

4

6

θ

Answer. sin θ = 3
√

13
13 ,

cos θ = 2
√

13
13 , tan θ = 3

2 ,
csc θ =

√
13
3 , sec θ =

√
13
2 ,

cot θ = 2
3

4.

1312

θ

Answer. sin θ = 5
13 ,

cos θ = 12
13 , tan θ = 5

12 ,
csc θ = 13

5 , sec θ = 13
12 ,

cot θ = 12
5

5.

7

14

θ

Answer. sin θ = 2
√

5
5 ,

cos θ =
√

5
5 , tan θ = 2,

csc θ =
√

5
2 , sec θ =

√
5,

cot θ = 1
2

6.

4

4

θ

Answer. sin θ =
√

2
2 ,

cos θ =
√

2
2 , tan θ = 1,

csc θ =
√

2, sec θ =
√

2,
cot θ = 1
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7.

2

√
10

θ

Answer. sin θ =
√

15
5 ,

cos θ =
√

10
5 , tan θ =

√
6

2 ,
csc θ =

√
15
3 , sec θ =

√
10
2 ,

cot θ =
√

6
3

8.

2

3

θ

Answer. sin θ = 2
√

13
13 ,

cos θ = 3
√

13
13 , tan θ = 2

3 ,
csc θ =

√
13
2 , sec θ =

√
13
3 ,

cot θ = 3
2

Exercise Group. For each of the following problems, calculate

(a) cos α and sin β;

(b) tan α and cot β;

(c) csc α and sec β

9.

5

3
β

α

Answer.

(a) cos α = sin β = 5
√

34
34 ;

(b) tan α = cot β = 3
5 ;

(c) csc α = sec β =
√

34
3

10.

7

8

α

β

Answer.

(a) cos α = sin β = 7
8 ;

(b) tan α = cot β =
√

15
7 ;

(c) csc α = sec β = 8
√

15
15

Exercise Group. Use the Cofunction Identities to determine the value of θ

11. sin 28◦ = cos θ

Answer. θ =
62◦

12. cos 74◦ = sin θ

Answer. θ =
16◦

13. tan 52◦ = cot θ

Answer. θ =
62◦

14. sec 87◦ = csc θ

Answer. θ =
3◦

15. sin 3π
8 = cos θ

Answer. θ =
π
8

16. cot 2π
5 = tan θ

Answer. θ =
π
10

Exercise Group. In Example 1.4.14, we determined that when a wa‘a sails
for one day (120 nautical miles) and deviates from its course by 1 House, the
resulting deviation from the reference course is 23.4 NM. Now, calculate the
deviations (x) for the remaining 7 angles. Round your answer to the nearest
tenth of a nautical mile. Remember that one house corresponds to 11.25◦.
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x8

7 Houses

6 Houses

5 Houses

4 Houses

3 Houses

2 Houses

1 House

R
ef

er
en

ce
C

ou
rs

e,
12

0
N

M

8 Houses

x7

x6

x5

x4

x3

x2

x1

17. 2 Houses (11.25◦ × 2 = 22.5◦);
x2

Answer. x2 = 45.9 NM

18. 3 Houses
(11.25◦ × 3 = 33.75◦); x3

Answer. x3 = 66.7 NM
19. 4 Houses (11.25◦ × 4 = 45◦);

x4

Answer. x4 = 84.5 NM

20. 5 Houses
(11.25◦ × 5 = 56.25◦); x5

Answer. x5 = 99.8 NM
21. 6 Houses (11.25◦ × 6 = 67.5◦);

x6

Answer. x6 = 110.9 NM

22. 7 Houses
(11.25◦ × 7 = 78.75◦); x7

Answer. x7 = 117.7 NM
23. 8 Houses (11.25◦ × 8 = 90◦);

x8

Answer. x8 = 120 NM

Exercise Group. In Exercise 1.4.7.17–23 we determined the deviation of
a wa‘a following a day of sailing (120 nautical miles). Your task now is to
calculate the distance the wa‘a has progressed along the reference course (north)
for each deviation, denoted as y. Round your answer to the nearest tenth of a
nautical mile and remember that one house corresponds to 11.25◦.
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120 NM

7 House

6 Houses

5 Houses

4 Houses

3 Houses

2 Houses
1 House

R
ef

er
en

ce
C

ou
rs

e,
12

0
N

M

y7

y6

y5

y4

y3

y2

y1

24. 1 House (11.25◦ × 1 = 11.25◦);
y1

Answer. y1 = 117.7 NM

25. 2 Houses (11.25◦ × 2 = 22.5◦);
y2

Answer. y2 = 110.9 NM
26. 3 Houses

(11.25◦ × 3 = 33.75◦); y3

Answer. y3 = 99.8 NM

27. 4 Houses (11.25◦ × 4 = 45◦);
y4

Answer. y4 = 84.5 NM
28. 5 Houses

(11.25◦ × 5 = 56.25◦); y5

Answer. y5 = 66.7 NM

29. 6 Houses (11.25◦ × 6 = 67.5◦);
y6

Answer. y6 = 45.9 NM
30. 7 Houses

(11.25◦ × 7 = 78.75◦); y7

Answer. y7 = 23.4 NM

Exercise Group. One way to determine your bearing on a canoe is by
observing and comparing the positions of celestial and other markers relative to
your canoe. To facilitate this, you can mark the locations of the Star Compass
on the opposite railings from the navigator’s seat in the back corner of the
canoe. However, since the Star Compass is circular and the canoe is rectangular,
accurately placing the markings can be challenging.
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y1

y2

y3

y4

y5

y6

x7x8

When the navigator occupies the port stern (back left) corner of the deck,
markers indicating the boundaries between houses can be placed on the corre-
sponding railings on the bow (front) and starboard (right) sides of the canoe.
For each value of θ, calculate the distance along the starboard railing (y) or
bow railing (x) for a canoe with dimensions l = 50 ft and w = 20 ft. Round
your answers to three decimal places.

31. θ = 5.625◦; y1

Answer. y1 = 1.970 ft
32. θ = 16.875◦; y2

Answer. y2 = 6.067 ft
33. θ = 28.125◦; y3

Answer. y3 = 10.69 ft
34. θ = 39.375◦; y4

Answer. y4 = 16.414 ft
35. θ = 50.625◦; y5

Answer. y5 = 24.370 ft
36. θ = 61.875◦; y6

Answer. y6 = 37.417 ft
37. θ = 73.125◦; x7

Answer. x7 = 15.167 ft
38. θ = 84.375◦; x8

Answer. x8 = 4.925 ft

Exercise Group. Use the right triangle (not drawn to scale) provided below
to solve for the given information. Round your solutions to two decimal places.
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b

c
a

α

β

39. a = 5, β = 35◦. Find b, c, and
α

Answer. b = 3.50, c = 6.10,
α = 55◦

40. b = 12, β = 23◦. Find a, c,
and α

Answer. a = 28.27,
c = 30.71, α = 67◦

41. b = 7, α = 75◦. Find a, c, and
β

Answer. a = 26.12,
c = 27.05, β = 15◦

42. c = 4, β = 50◦. Find a, b, and
α

Answer. a = 3.06, b = 2.57,
α = 40◦

43. c = 10, α = 18◦. Find a, b,
and β

Answer. a = 3.09, b = 9.51,
β = 72◦

44. a = 6, α = 38◦. Find b, c, and
β

Answer. b = 7.68, c = 9.75,
β = 52◦

45. A wa‘a sails in the direction of the house Nālani Ho‘olua for one day,
covering 120 nautical miles. How many nautical miles has the wa‘a
traveled north? How many miles has the wa‘a traveled west? To calculate
the angle θ, refer to the Star Compass (Figure 1.1.4) to determine the
number of houses, and use the fact that one house is 11.25◦.

120 mi

west

north

θ

Answer. 66.7 NM west; 99.8 NM north
46. Movement of Sand. The movement of sand on a beach is a dynamic

process influenced by various factors, such as waves. When waves approach
the shore at an angle, they lead to the shifting of sand. During the swash
phase, as the wave crashes onto the shore, water and sediment move onto
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the beach following the wave’s angle. Subsequently, gravity propels the
water and sediment back into the ocean, perpendicular to the shoreline,
in a process known as backwash. This interplay of swash and backwash
creates a zig-zag pattern called longshore drift.

Certain beaches undergo seasonal changes in wave direction. Some
experience waves from one direction in one season and from another
direction in the next, while those predominantly receiving waves from a
single direction might accumulate sand in specific areas.

Calculate how far along the shore a single grain of sand moves after
a wave breaks at a 60◦ angle and travels onto the shore for 10 ft before
receding back into the ocean.

Waves

10
ft

swash

xmovement

backw
ash

60◦

Answer. 5ft

Exercise Group. Between 2013 and 2017, Hōkūle‘a completed a global
circumnavigation with a mission mālama honua - “care for Island Earth” and
to foster a sense of ‘ohana (“family”) for all people and places. This remarkable
voyage spanned 40,000 nautical miles and made stops at over 150 ports across
18 nations.

Throughout this voyage, Earth’s rotation occurs around an axis that extends
from the North Pole to the South Pole. The rotation imparts an angular speed
and linear velocity to every point on Earth. Assuming Earth completes one
rotation within 24 hours and treating Earth as a perfect sphere with a radius
of R = 4, 000 miles, we can calculate the following parameters for each of the
Mālama Honua voyage’s ports, given their latitudes (ϕ):

(a) Calculate r, the distance from the port to Earth’s Axis of Rotation (in
miles, rounded to one decimal place).

(b) Calculate ω, the angular velocity (in radians per hour, rounded to four
decimal places).

(c) Calculate v, the linear speed (in miles per hour, rounded to the nearest
whole number).
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Earth’s Axis

Equator
R

R

r

ϕ

ϕ
Port City

47. Hilo, Hawai‘i (19.7216◦ N)
Answer.

(a) r = 3, 8765.4 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 986 mi/hr

48. Papeete, Tahiti (17.5325◦ S)
Answer.

(a) r = 3, 814.2 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 999 mi/hr
49. Apia, Samoa (13.8507◦ S)

Answer.
(a) r = 3, 883.7 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 017 mi/hr

50. Waitangi, Aotearoa (35.2683◦

S)
Answer.

(a) r = 32, 65.8 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 855 mi/hr
51. Sydney, Australia (33.8688◦ S)

Answer.
(a) r = 3, 321.3 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 870 mi/hr

52. Bali, Indonesia ( 8.4095◦ S)
Answer.

(a) r = 3, 957.0 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 036 mi/hr
53. Port Louis, Mauritius

(20.1609◦ S)
Answer.

(a) r = 3, 754.9 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 983 mi/hr

54. Cape Town, South Africa
(33.9249◦ S)
Answer.

(a) r = 3, 319.1 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 869 mi/hr
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55. Natal, Brazil (5.7842◦ S)
Answer.

(a) r = 3, 979.6 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 042 mi/hr

56. Necker, British Virgin Islands
(18.5268◦ N)
Answer.

(a) r = 3, 792.7 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 993 mi/hr
57. Yarmouth, Nova Scotia

(43.8379◦ N)
Answer.

(a) r = 3, 792.7 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 755 mi/hr

58. Balboa, Panama (8.9614◦N)
Answer.

(a) r = 3, 951.2 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 034 mi/hr

59. Galapagos Islands (0.9538◦ S)
Answer.

(a) r = 3, 999.5 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 047 mi/hr

60. Rapa Nui (27.1127◦ S)
Answer.

(a) r = 3, 560.5 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 932 mi/hr
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1.5 Trigonometric Functions of Any Angles
Now that we have been introduced to the six trigonometric functions for special
angles in the first quadrant, we can explore their properties across all quadrants.

1.5.1 Determine the Signs of the Trigonometric Functions
Based on its Quadrant

Let P (x, y) be a point on the circle. The signs of the six trigonometric functions
vary depending on the quadrant in which P (x, y) lies in.

x

y

r

P (x, y)

θy

x

Example 1.5.1 Let P (x, y) is in Quadrant II. Determine the signs for each of
the six trigonometric functions.
Solution. Since we are in Quadrant II, x < 0 and y > 0. Note that r > 0.
Then we have

sin θ = y

r
= (+)

(+) = (+) cos θ = x

r
= (−)

(+) = (−) tan θ = y

x
= (+)

(−) = (−)

csc θ = r

y
= (+)

(+) = (+) sec θ = r

x
= (+)

(−) = (−) cot θ = x

y
= (−)

(+) = (−)

□
You can check the remaining quadrants using a similar approach. Table 1.5.2

and Figure 1.5.3 provide a list of the signs of the six trigonometric functions
for each quadrant.



CHAPTER 1. TRIGONOMETRY 66

Table 1.5.2 Signs of the trigonometric functions

Quadrant Positive Functions Negative Functions

I all none
II sin, csc cos, sec, tan, cot
III tan, cot sin, csc, cos, sec
IV cos, sec sin, csc, tan, cot

x

y

++

- -

sin θ, csc θ

x

y

+-

+ -

tan θ, cot θ

x

y

+-

- +

cos θ, sec θ

Figure 1.5.3 Signs of trigonometric functions

Example 1.5.4 If sin θ < 0 and cos θ > 0, what quadrant does θ lie in?
Solution. Since sin θ < 0, then θ is either in Quadrant III or IV. However,
we also have cos θ > 0 which means that θ is either in Quadrant I or IV. Thus
the only quadrant that satisfied both conditions is Quadrant IV. □

Mnemonic devices for remembering the quadrants in which the trigonometric
functions are positive are

• “A Smart T rig C lass”

• “All Students Take Calculus”

which correspond to “All S in Tan Cos.”

x

y

AllSin
(Csc)

Tan
(Cot)

Cos
(Sec)

Example 1.5.5 Let sin θ = − 12
13 and cos θ = − 5

13 . Compute the exact values
of the remaining trigonometric functions of θ using identities.
Solution. Since sin θ < 0 and cos θ < 0, we refer to Table 1.5.2 and see that
θ is in Quadrant III. From Table 1.5.2 we know tan θ > 0, csc θ < 0, sec θ < 0,
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cot θ > 0. From the Quotient Identity (Definition 1.4.3), we have

tan θ = sin θ

cos θ
=

12
13
5

13
= 12

5

Next, using the Reciprocal Identities (Definition 1.4.2), we get

csc θ = 1
sin θ

= 1
− 12

13
= −13

12

sec θ = 1
cos θ

= 1
− 5

13
= −13

5

cot θ = 1
tan θ

= 1
12
5

= 5
12

□

1.5.2 Reference Angles
Now that we can determine the signs of trigonometric functions, we will
demonstrate how the value of any trigonometric function at any angle can be
found from its value in Quadrant I (between 0◦ and 90◦ or 0 and π

2 ).

Definition 1.5.6 Let t be a real number. A reference angle, t′, is the acute
angle (< 90◦) formed by the terminal side of angle t and the x-axis. In other
words, it is the shortest distance along the unit circle measured between the
terminal side and the x-axis. Angles in Quadrant I are their own reference
angles. ♢

Remark 1.5.7 Calculating the reference angle. To calculate the reference
angle t‘ for a given angle t:

• In radians, if t > 2π or if t < 0, add or subtract multiples of 2π to obtain
a coterminal angle between 0 and 2π. Then, find the reference angle.

• In degrees, if t > 360◦ or t < 0◦, add or subtract multiples of 360◦ to
obtain a coterminal angle between 0◦ and 360◦. Then, find the reference
angle.

Quadrant I:

t′ = t

x

y

t = t′

Quadrant II:

t′ = π − t

t′ = 180◦ − t

x

y

t = t′

Quadrant III:

t′ = t − π

t′ = t − 180◦

x

y

t

t′

Quadrant IV:

t′ = 2π − t

t′ = 360◦ − t

x

y

t

t′
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Example 1.5.8 Find the reference angle for each value of t

(a) t = π
3

x

y

π
3

Solution. The angle t = π
3 is in the first quadrant and so it is its own

reference angle: t = t′ = π
3

(b) t = 3π
4

x

y

3π
4

t′

Solution. From the figure, we see that the shortest distance to the
x-axis is in the direction of π. We see that t′ + 3π

4 = π so t′ = π − 3π
4 = π

4 .

(c) t = − 3π
4

x

y

− 3π
4

t′

Solution 1. Since t < 0, we can add 2π to get − 3π
4 + 2π = 5π

4 . From
the formula, we get t′ = 5π

4 − π = π
4 .
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Solution 2. Since − 3π
4 spans only two quadrants counterclockwise, we

can treat it similarly to an angle in Quadrant II. By the previous problem,
t′ + 3π

4 = π so t′ = π − 3π
4 = π

4 .

(d) t = 240◦

x

y

240◦

t′

Solution. From the figure we see the shortest distance to the x-axis is
towards 180◦. We observe that 240◦ − t′ = 180◦ so t′ = 240◦ − 180◦ = 60◦

(e) t = 11π
6

x

y

11π
6

t′

Solution. From the figure, we see the shortest distance to the x-axis is
towards 2π. We observe that t′ + 11π

6 = 2π so t′ = 2π − 11π
6 = π

6 .

(f) t = 2π
3

x

y

2π
3

t′
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Solution. From the figure, we see the shortest distance to the x-axis is
towards π. We observe that t′ + 2π

3 = π so t′ = π − 2π
3 = π

3 .

□

Remark 1.5.9 Calculate an angle in standard position given its
quadrant and reference angle. To calculate an angle in standard position,
t, given the quadrant that t lies in and the reference angle t′,
Quadrant I:

t = t′

x

y

t = t′

Quadrant II:

t = π − t′

t = 180◦ − t′

x

y

t
t′

Quadrant III:

t = t′ − π

t = t′ − 180◦

x

y

t

t′

Quadrant IV:

t = 2π − t′

t = 360◦ − t′

x

y

t

t′

For radians only: If the reference angle (in radians) is of the form t′ = aπ
b ,

then the associated angle in standard position, t, can be calculated by

x

y

I
t = t′ = aπ

b

II
t = (b−a)π

b

III
t = (b+a)π

b

IV
t = (2b−a)π

b

Example 1.5.10 Calculate an angle given its reference angle and
quadrant. Given a reference angle, t, compute the associated angle in standard
position for Quadrant II, III, and IV.
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(a) t′ = π
6

x

y

π
6

(i) Quadrant II
Solution 1. In Quadrant II, the associated angle is t = π − π

6 =
6π
6 − π

6 = 5π
6

x

y

5π
6

π
6

Solution 2. Since t′ = π
6 = 1π

6 , then t′ = (6−1)π
6 = 5π

6
(ii) Quadrant III

Solution 1. In Quadrant III, the associated angle is t = π + π
6 =

6π
6 + π

6 = 7π
6

x

y

7π
6

π
6

Solution 2. t′ = (6+1)π
6 = 7π

6
(iii) Quadrant IV

Solution 1. In Quadrant IV, the associated angle is t = 2π − π
6 =

12π
6 − π

6 = 11π
6
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x

y

11π
6

π
6

Solution 2. t′ = (2·6−1)π
6 = 11π

6

(b) t′ = 45◦

x

y

45◦

(i) Quadrant II
Solution. In Quadrant II, the associated angle is t = 180◦ − 45◦ =
135◦

x

y

135◦

45◦

(ii) Quadrant III
Solution. In Quadrant III, the associated angle is t = 180◦ +45◦ =
225◦
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x

y

225◦

45◦

(iii) Quadrant IV
Solution. In Quadrant IV, the associated angle is t = 360◦ −45◦ =
315◦

x

y

315◦

45◦

□

1.5.3 Evaluating Trigonometric Functions Using Reference
Angles

To evaluate trigonometric functions in any quadrant using reference angles,
we begin with an angle, θ, that lies in Quadrant II. When evaluating sin θ
and cos θ., we begin by plotting θ in standard position and then proceed to
determine and draw its corresponding reference angle, θ′.
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x

y

P

r θ

θ′

By definition we know that

sin θ = y

r
; cos θ = x

r

Next, we draw the reference angle, θ′ in standard position

x

y

P ′(x′, y′)P (x, y)

A

r r

x x′

y′y

θ′
θ

We now have
sin θ′ = y′

r
; cos θ′ = x′

r
.

Notice that the y-coordinates for P and P ′ share the same value, thus y = y′
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and we get
sin θ = sin θ′.

Similarly, we can see that the x-coordinates of P and P ′ have opposite
values, thus x = −x′ and

cos θ = − cos θ′.

You may have noticed that we have two similar triangles, differing only
in their x-coordinates have opposite values. Consequently, the values of each
trigonometric function for the two triangles will match, except for a potential
distinction in signs. The sign of each function can be deduced by referring to
Table 1.5.2. This approach is applicable across all quadrants. To sum up, we
now outline the steps for utilizing reference angles to evaluate trigonometric
functions.
Remark 1.5.11 Steps for Evaluating Trigonometric Functions Using
Reference Angles. The values of a trigonometric function for a specific
angle are equivalent to the values of the same trigonometric function for the
reference angle, with a potential distinction in sign. To compute the value of a
trigonometric function for any angle, use the following steps

1. Draw the angle in standard position.

2. Determine the reference angle associated with the angle.

3. Evaluate the trigonometric function at the reference angle.

4. Use Table 1.5.2 and the quadrant of the original angle to determine the
appropriate sign for the function.

Example 1.5.12 Use the reference angle associated with the given angle to
find the exact value of
(a) cos 210◦

Solution. We will use the steps for evaluating trigonometric functions
using reference angles.

(a) First we draw the angle

x

y

P
r

θ

θ′

(b) The reference angle is

θ′ = 210◦ − 180◦ = 30◦
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(c) cos 30◦ =
√

3
2

(d) Since 210◦ lies in Quadrant III, we know that cos θ < 0, so

cos 210◦ = −
√

3
2

(b) tan 7π
4

Solution. We will use the steps for evaluating trigonometric functions
using reference angles.

(a) First we draw the angle

x

y

P

r

θ

θ′

(b) The reference angle is

2π − 7π

4 = 8π

4 − 7π

4 = π

4

(c) tan π

4 = 1

(d) Since 7π
4 lies in Quadrant IV, we know that tan θ < 0, so

tan 7π

4 = −1

□

Example 1.5.13 Calculate sin θ and cos θ if θ = 20π
3

Solution.

1. First we draw the angle
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x

y

P
θ

θ′

Figure 1.5.14 The angle θ = 20π
3 makes three rotations before ending in

Quadrant II.

2. To obtain the reference angle, we first subtract multiples of 2π from θ to
obtain a coterminal angle between 0 and 2π:

20π

3 − 2π = 20π

3 − 6π

3 = 14π

3
20π

3 − 4π = 20π

3 − 12π

3 = 8π

3
20π

3 − 6π = 20π

3 − 18π

3 = 2π

3

From Example 1.5.8, the reference angle for 2π
3 is θ′ = π

3

3. sin π
3 =

√
3

2 and cos π
3 = 1

2

4. Since 20π
3 lies in Quadrant II, we know that sin θ > 0 and cos θ < 0, so

sin 20π

3 =
√

3
2 ; cos 20π

3 = −1
2

□

1.5.4 Periodic Functions
In Figure 1.5.14 of Example 1.5.13, point P corresponds to the angle 20π

3 . To
determine the reference angle, we subtracted multiples of 2π. Each iteration of
2π retraces the unit circle back to the point P , resulting in a coterminal angle.
Therefore

sin 2π

3 = sin 8π

3 = sin 14π

3 = sin 20π

3
Rewriting the angles we get

sin
(

2π

3 + 0 · 2π

)
= sin

(
2π

3 + 1 · 2π

)
= sin

(
2π

3 + 2 · 2π

)
= sin

(
2π

3 + 3 · 2π

)
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Similarly,

cos
(

2π

3 + 0 · 2π

)
= cos

(
2π

3 + 1 · 2π

)
= cos

(
2π

3 + 2 · 2π

)
= cos

(
2π

3 + 3 · 2π

)
In general, consider an angle θ measured in radians and its corresponding

point P on the unit circle. Adding or subtracting integer multiples of 2π to
θ will lead to a point on the unit circle that aligns with P . Thus, the values
of sine and cosine for all angles corresponding to point P are equivalent. This
leads us to the following periodic properties.

Definition 1.5.15 Periodic Properties.

sin(θ + 2πk) = sin θ cos(θ + 2πk) = cos θ

where k is any integer. ♢
Functions like these that repeats its values in regular cycles are called

periodic functions.

Definition 1.5.16 A function f is called periodic if there exists a positive
number p such that

f(θ + p) = f(θ)

for every θ. The smallest number p is called the period of f . ♢
Sine, cosine, cosecant, and secant repeat their values with a period of 2π

while tangent and cotangent have a period of π.

Definition 1.5.17 Periodic Properties.

sin(θ + 2π) = sin θ cos(θ + 2π) = cos θ tan(θ + π) = tan θ

csc(θ + 2π) = csc θ sec(θ + 2π) = sec θ cot(θ + π) = cot θ

♢

1.5.5 Trigonometric Table
The Trigonometric Identities and reference angles give us the values of trigono-
metric functions in Table 1.5.18.
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Table 1.5.18 Values of the six trigonometric functions for common
angles

θ (deg) θ (rad) sin θ cos θ tan θ csc θ sec θ cot θ

0◦ 0 0 1 0 undef 1 undef

30◦ π

6
1
2

√
3

2

√
3

3 2 2
√

3
3

√
3

45◦ π

4

√
2

2

√
2

2 1
√

2
√

2 1

60◦ π

3

√
3

2
1
2

√
3 2

√
3

3 2
√

3
3

90◦ π

2 1 0 undef 1 undef 0

120◦ 2π

3

√
3

2 −1
2 −

√
3 2

√
3

3 −2 −
√

3
3

135◦ 3π

4

√
2

2 −
√

2
2 −1

√
2 −

√
2 −1

150◦ 5π

6
1
2 −

√
3

2 −
√

3
3 2 −2

√
3

3 −
√

3

180◦ π 0 −1 0 undef −1 undef

210◦ 7π

6 −1
2 −

√
3

2

√
3

3 −2 −2
√

3
3

√
3

225◦ 5π

4 −
√

2
2 −

√
2

2 1 −
√

2 −
√

2 1

240◦ 4π

3 −
√

3
2 −1

2
√

3 −2
√

3
3 −2

√
3

3

270◦ 3π

2 −1 0 undef −1 undef 0

300◦ 5π

3 −
√

3
2

1
2 −

√
3 −2

√
3

3 2 −
√

3
3

315◦ 7π

4 −
√

2
2

√
2

2 −1 −
√

2
√

2 −1

330◦ 11π

6 −1
2

√
3

2 −
√

3
3 −2 2

√
3

3 −
√

3

Remark 1.5.19 Table Made Easy. Table 1.5.18 may seem intimidating but
if you recognize the symmetry about 90◦, 180◦, and 270◦, you will only need
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to focus on the values for the first quadrant (Table 1.4.6). In fact, you need
only produce the values of sine in Quadrant I. Use the Cofunction Identities
(Definition 1.4.7) to find the values of cosine. Next, apply the trigonometric
identity to find tan θ = sin θ/ cos θ. Finally, use the the Reciprocal Identities
(Definition 1.4.2) to produce csc θ, sec θ, and cot θ.

1.5.6 Pythagorean Identities
Definition 1.5.20 Pythagorean Identities.

1. sin2 θ + cos2 θ = 1

2. 1 + tan2 θ = sec2 θ

3. 1 + cot2 θ = csc2 θ

♢
Proof. We will use the Pythagorean Theorem to prove the reciprocal identities.

x

y

r

x = cos θ

y = sin θ

P (x, y)

θ

If the point P (x, y) is a point on the circle with radius r, then the formula
for the circle is

x2 + y2 = r2

By definition x
r = cos θ and y

r = sin θ. Thus we have

sin2 θ + cos2 θ =
(y

r

)2
+

(x

r

)2
= x2 + y2

r2 = r2

r2 = 1

which is our first Pythagorean Identity. The proofs of the remaining identities
are left as exercises. ■

Example 1.5.21 Let θ be an angle in Quadrant IV and let cos θ = 3
5 . Calculate

the exact values of sin θ and tan θ.
Solution. Substituting our value of cos θ into the Pythagorean Identity,

sin2 θ + cos2 θ = 1
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sin2 θ +
(

3
5

)2
= 1

sin2 θ + 9
25 = 1

sin2 θ = 1 − 9
25

sin2 θ = 16
25

Taking the square root of both sides,

sin θ = ±
√

16
25 = ±4

5

Since θ is in Quadrant II, we have sin θ < 0. Thus we choose the negative
answer to get

sin θ = −4
5

Next we use the Quotient Identity to get

tan θ = sin θ

cos θ
=

− 4
5

3
5

= −4
5 · 5

3 = −4
3

□

1.5.7 Even and Odd Trigonometric Functions
Recall that a function f is even if f(−x) = f(x) for all values of x, and a
function is odd if f(−x) = −f(x) for all values of x. With this understanding,
we can now classify trigonometric functions as either even or odd.

Definition 1.5.22 Even and Odd Trigonometric Properties. The cosine
and secant functions are even

cos(−θ) = cos θ sec(−θ) = sec θ

The sine, cosecant, tangent, and cotangent functions are odd

sin(−θ) = − sin θ csc(−θ) = − csc(θ)
tan(−θ) = − tan θ cot(−θ) = − cot(θ)

♢
Proof. Let P be a point on the unit circle corresponding to the angle θ with
coordinates (x, y) and Q be the point corresponding to the angle −θ with
coordinates (x, −y).
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x

y

0 1

P = (x.y)

Q = (x, −y)

−θ

θ

Using the Definition 1.3.4 for the six trigonometric functions we have

sin θ = y, sin(−θ) = −y, cos θ = x, cos(−θ) = x

So

sin(−θ) = −y = − sin θ, cos(−θ) = x = cos θ

Thus we conclude that sine is an odd function and cosine is an even func-
tion. Next, using the Quotient (Definition 1.4.3) and Reciprocal Identities
(Definition 1.4.2) we get

tan(−θ) = sin(−θ)
cos(−θ) = − sin θ

cos θ
= − tan θ,

cot(−θ) = 1
tan(−θ) = 1

− tan θ
= − cot θ,

csc(−θ) = 1
sin(−θ) = 1

− sin θ
= − csc θ,

sec(−θ) = 1
cos(−θ) = 1

− cos θ
= sec θ.

Thus tangent, cotangent, cosecant are odd functions and secant is an even
function. ■

Example 1.5.23 Use the even-odd properties of trigonometric functions to
determine the exact value of
(a) csc(−30◦)

Solution. Since cosecant is an odd function, the cosecant of a negative
angle is the opposite sign of the cosecant of the positive angle. Thus,
csc(−30◦) = − csc 30◦ = −2

(b) cos(−θ) if cos θ = 0.4

Solution. Cosine is an even function so cos(−θ) = cos θ = 0.4.



CHAPTER 1. TRIGONOMETRY 83

□

1.5.8 Exercises

Exercise Group. Determine the quadrant containing θ given the following
1. cot θ < 0 and cos θ < 0

Answer. QII
2. csc θ > 0 and tan θ > 0

Answer. QI
3. cos θ > 0 and sin θ < 0

Answer. QIV
4. sec θ > 0 and tan θ > 0

Answer. QI
5. tan θ < 0 and csc θ > 0

Answer. QII
6. cot θ > 0 and sin θ < 0

Answer. QIV
7. sec θ < 0 and csc θ < 0

Answer. QIII
8. cos θ < 0 and tan θ > 0

Answer. QIII

Exercise Group. The point P (x, y) is on the terminal side of angle θ.
Determine the exact values of the six trigonometric functions at θ

9.

x

y

P(-8,6)
θ

Answer. sin θ = 3
5 ,

cos θ = − 4
5 , tan θ = − 3

4 ,
csc θ = 5

3 , sec θ = − 5
4 ,

cot θ = − 4
3

10.

x

y

P(6,-7)

θ

Answer. sin θ = − 7
√

85
85 ,

cos θ = 6
√

85
85 , tan θ = − 7

6 ,
csc θ = −

√
85
7 , sec θ =

√
85
6 ,

cot θ = − 6
7

11. (3, −4)
Answer. sin θ = − 4

5 ,
cos θ = 3

5 , tan θ = − 4
3 ,

csc θ = − 5
4 , sec θ = 5

3 ,
cot θ = − 3

4

12. (−12, −5)
Answer. sin θ = − 5

13 ,
cos θ = − 12

13 , tan θ = 5
12 ,

csc θ = − 13
5 , sec θ = − 13

12 ,
cot θ = 12

5

13. (−2, −3)
Answer. sin θ = − 3

√
13

13 ,
cos θ = − 2

√
13

13 , tan θ = 3
2 ,

csc θ = −
√

13
3 , sec θ = −

√
13
2 ,

cot θ = 2
3

14. (−4, 4)
Answer. sin θ =

√
2

2 ,
cos θ = −

√
2

2 , tan θ = −1
csc θ =

√
2, sec θ = −

√
2,

cot θ = −1

15. (−24, 7)
Answer. sin θ = 7

25 ,
cos θ = − 24

25 , tan θ = − 7
24 ,

csc θ = 25
7 , sec θ = − 25

24 ,
cot θ = − 24

7

16. (9, −40)
Answer. sin θ = − 40

41 ,
cos θ = 9

41 , tan θ = − 40
9 ,

csc θ = − 41
40 , sec θ = 41

9 ,
cot θ = − 9

40

Exercise Group. Find the exact value of the remaining five trigonometric
functions of θ from the given information.
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17. tan θ = − 12
5 , θ is Quadrant II

Answer. sin θ = 12
13 ,

cos θ = − 5
13 , csc θ = 13

12 ,
sec θ = − 13

5 , cot θ = − 5
12

18. cos θ = 3
5 , θ is Quadrant IV

Answer. sin θ = − 4
5 ,

tan θ = − 4
3 , csc θ = − 5

4 ,
sec θ = 5

3 , cot θ = − 3
4

19. csc θ =
√

10
2 , θ is Quadrant II

Answer. sin θ =
√

10
5 ,

cos θ = −
√

15
5 , tan θ = −

√
6

3 ,
sec θ = −

√
15
3 , cot θ = − 6

2

20. cos θ = − 5
8 , θ is Quadrant III

Answer. sin θ = −
√

39
8 ,

tan θ =
√

39
5 , csc θ = − 8

√
39

39 ,
sec θ = − 8

5 , cot θ = 5
√

39
39

21. sec θ = −2, π < θ < 3π
2

Answer. sin θ = −
√

3
2 ,

cos θ = − 1
2 , tan θ =

√
3,

csc θ = − 2
√

3
3 , cot θ =

√
3

3

22. cot θ = − 5
3 , 3π

2 < θ < 2π

Answer. sin θ = − 3
√

34
34 ,

cos θ = 5
√

34
34 , tan θ = − 3

5 ,
csc θ = −

√
34
3 , sec θ =

√
34
5

23. cos θ = 2
3 , 0 < θ < π

Answer. sin θ =
√

5
3 ,

tan θ = −
√

5
2 , csc θ = 3

√
5

5 ,
sec θ = − 3

2 , cot θ = − 2
√

5
5

24. tan θ = 7
4 , 0 < θ < π

2

Answer. sin θ = 7
√

65
65 ,

cos θ = 4
√

65
65 , csc θ =

√
65
7 ,

sec θ =
√

65
4 , cot θ = 4

7

25. csc θ = 3
2 , tan θ < 0

Answer. sin θ = 2
3 ,

cos θ = −
√

5
3 , tan θ = − 2

√
5

5 ,
sec θ = − 3

√
5

5 , cot θ = −
√

5
2

26. sin θ = 5
6 , cot θ > 0

Answer. cos θ =
√

11
6 ,

tan θ = 5
√

11
11 , csc θ = 6

5 ,
sec θ = 6

√
11

11 , cot θ =
√

11
5

27. sin θ = − 15
17 , cos θ < 0

Answer. cos θ = − 8
17 ,

tan θ = 15
8 , csc θ = − 17

15 ,
sec θ = − 17

8 , cot θ = 8
15

28. cot θ = − 1
3 , sin θ > 0

Answer. sin θ = 3
√

10
10 ,

cos θ = −
√

10
10 , tan θ = −3,

csc θ =
√

10
3 , sec θ = −

√
10

Exercise Group. Given a reference angle, t′, calculate the corresponding
angle, t, in standard position, along with the values of sin t, cos t, and tan t for

(a) Quadrant II

(b) Quadrant III

(c) Quadrant IV

29. t′ = π
4

Answer 1. t = 3π
4 ,

sin 3π
4 =

√
2

2 , cos 3π
4 = −

√
2

2 ,
tan 3π

4 = −1
Answer 2. t = 5π

4 ,
sin 5π

4 = −
√

2
2 , cos 5π

4 = −
√

2
2 ,

tan 5π
4 = 1

Answer 3. t = 7π
4 ,

sin 7π
4 = −

√
2

2 , cos 7π
4 =

√
2

2 ,
tan 7π

4 = −1

30. t′ = π
3

Answer 1. t = 2π
3 ,

sin 2π
3 =

√
3

2 , cos 2π
3 = − 1

2 ,
tan 2π

3 = −
√

3
Answer 2. t = 4π

3 ,
sin 4π

3 = −
√

3
2 , cos 4π

3 = − 1
2 ,

tan 4π
3 =

√
3

Answer 3. t = 5π
3 ,

sin 5π
3 = −

√
3

2 , cos 5π
3 = 1

2 ,
tan 5π

3 = −
√

3
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31. t′ = 30◦

Answer 1. t = 150◦,
sin 150◦ = 1

2 , cos 150◦ = −
√

3
2 ,

tan 150◦ = −
√

3
3

Answer 2. t = 210◦,
sin 210◦ = − 1

2 ,
cos 210◦ = −

√
3

2 ,
tan 210◦ =

√
3

3
Answer 3. t = 330◦,
sin 330◦ = − 1

2 , cos 330◦ =
√

3
2 ,

tan 330◦ = −
√

3
3

32. t′ = 60◦

Answer 1. t = 120◦,
sin 120◦ =

√
3

2 , cos 120◦ = − 1
2 ,

tan 120◦ = −
√

3
Answer 2. t = 240◦,
sin 240◦ = −

√
3

2 ,
cos 240◦ = − 1

2 , tan 240◦ =
√

3
Answer 3. t = 300◦,
sin 300◦ = −

√
3

2 , cos 300◦ = 1
2 ,

tan 300◦ = −
√

3

Exercise Group. For each angle θ,

(a) Determine the quadrant in which θ lies.

(b) Calculate the reference angle θ′

(c) Use the reference angle, θ′ to evaluate the exact values of the six trigono-
metric functions for θ

33. θ = − 3π
4

Answer
1. QIII
Answer
2. θ′ = π

4
Answer
3. sin θ = −

√
2

2 ,
cos θ = −

√
2

2 ,
tan θ = 1,
csc θ = −

√
2,

sec θ = −
√

2,
cot θ = 1

34. θ = 4π
3

Answer
1. QIII
Answer
2. θ′ = π

3
Answer
3. sin θ = −

√
3

2 ,
cos θ = − 1

2 ,
tan θ =

√
3,

csc θ = − 2
√

3
3 ,

sec θ = −2,
cot θ =

√
3

3

35. θ = 11π
6

Answer
1. QIV
Answer
2. θ′ = π

6
Answer
3. sin θ = − 1

2 ,
cos θ =

√
3

2 ,
tan θ = −

√
3

3 ,
csc θ = −2,
sec θ = 2

√
3

3 ,
cot θ = −

√
3

36. θ = 7π
3

Answer 1. QI
Answer
2. θ′ = π

3
Answer
3. sin θ =

√
3

2 ,
cos θ = 1

2 ,
tan θ =

√
3,

csc θ = 2
√

3
3 ,

sec θ = 2,
cot θ =

√
3

3

37. θ = 120◦

Answer 1. QII
Answer
2. θ′ = 60◦

Answer
3. sin θ =

√
3

2 ,
cos θ = − 1

2 ,
tan θ = −

√
3,

csc θ = 2
√

3
3 ,

sec θ = −2,
cot θ = −

√
3

3

38. θ = 480◦

Answer 1. QII
Answer
2. θ′ = 60◦

Answer
3. sin θ =

√
3

2 ,
cos θ = − 1

2 ,
tan θ = −

√
3,

csc θ = 2
√

3
3 ,

sec θ = −2,
cot θ = −

√
3

3

Exercise Group. Use the fact that the trigonometric functions are periodic
to find the exact value for each expression.

39. tan 420◦

Answer.
√

3
40. csc 540◦

Answer. Un-
defined

41. sin 765◦

Answer.
√

2
2

42. sec 1200◦

Answer. −2
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43. cot 8π
3

Answer. −
√

3
3

44. cos 21π
4

Answer. −
√

2
2

45. tan 35π
6

Answer.
√

3
2

46. sin 39π
4

Answer. −
√

2
2

47. Prove the second Pythagorean Identity (Definition 1.5.20): 1 + tan2 θ =
sec2 θ.

Hint. Begin with sin2 θ+cos2 θ = 1 and divide both sides of the equation
by cos2 θ.

48. Prove the third Pythagorean Identity (Definition 1.5.20): 1 + cot2 θ + 1 =
csc2 θ.

Hint. Begin with sin2 θ+cos2 θ = 1 and divide both sides of the equation
by sin2 θ.

Exercise Group. Use the Pythagorean Identity to find the exact value of
the following

49. sin2 38◦+cos2 38◦

Answer. 1
50. csc2 13◦−cot2 13◦

Answer. 1
51. cot2 200◦ −

csc2 200◦

Answer. −1
52. sec2 6π

5 − tan2 6π
5

Answer. 1
53. tan2 5π

7 − sec2 5π
7

Answer. −1
54. sin2 14π

13 +
cos2 14π

13
Answer. 1

Exercise Group. Use the Pythagorean Identities to express the first trigono-
metric function of θ in terms of the second function, given the quadrant.

55. sin θ, cos θ, Quadrant III
Answer. sin θ =
−

√
1 − cos2 θ

56. cos θ, sin θ, Quadrant II
Answer. cos θ =
−

√
1 − sin2 θ

57. tan, sec θ, Quadrant IV
Answer. tan θ =
−

√
sec2 θ − 1

58. cot θ, csc θ, Quadrant III
Answer. cot θ =√

csc2 θ − 1
59. tan θ, sin θ, Quadrant III

Answer. tan θ = − sin θ√
1−sin2 θ

60. tan θ, cos θ, Quadrant II
Answer. tan θ =

√
1−cos2 θ
cos θ

Exercise Group. Use the Pythagorean Identities to find the exact values of
the remaining five trigonometric functions of θ from the given information.

61. tan θ = − 4
3 , θ is in Quadrant

IV
Answer. sin θ = − 4

5 ,
cos θ = 3

5 , csc θ = − 5
4 ,

sec θ = 5
3 , cot θ = − 3

4

62. cos θ = − 1
4 , θ is in Quadrant

II
Answer. sin θ =

√
15
4 ,

tan θ = −
√

15, csc θ = 4
√

15
15 ,

sec θ = −4, cot θ = −
√

15
15

63. sin θ = − 2
3 , θ is in Quadrant

III
Answer. cos θ = −

√
5

3 ,
tan θ = 2

√
5

5 , csc θ = − 3
2 ,

sec θ = − 3
√

5
5 , cot θ =

√
5

2

64. cos θ = 3
5 , θ is in Quadrant IV

Answer. sin θ = − 4
5 ,

tan θ = − 4
3 , csc θ = − 5

4 ,
sec θ = 5

3 , cot θ = − 3
4

Exercise Group. Use the even and odd properties to evaluate the following
65. cos(−60◦)

Answer. 1
2

66. tan(−225◦)
Answer. −1

67. csc(−330◦)
Answer. 2
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68. sin(−90◦)
Answer. −1

69. cot(−300◦)
Answer.

√
3

3

70. sec(−150◦)
Answer. − 2

√
3

3

71. sin
(
− 11π

6
)

Answer. 1
2

72. tan
(
− 5π

4
)

Answer. −1
73. cos

(
− 4π

3
)

Answer. − 1
2

74. tan(−π)
Answer. 0

75. sec
(
− π

4
)

Answer.
√

2
76. csc

(
− 7π

6
)

Answer. 2

Exercise Group. The Makali‘i is sailing along the Kohala Coast, maintaining
a distance of two nautical miles from the shore. An observer at Mahukona is
monitoring Makali‘i’s passage. Let d denote the length of the line connecting
Makali‘i to the Mahukona observer. Given θ as the angle formed between d and
the shore, determine Makali‘i’s distance, d, from the observer for each value of
θ, rounded to one decimal place.

Mahukona

d

2
m

ile
s

θ

77. θ = 30◦

Answer. 4
NM

78. θ = 45◦

Answer. 2.8
NM

79. θ = 60◦

Answer. 2.3
NM

80. θ = 90◦

Answer. 2
NM

81. θ = 120◦

Answer. 2.3
NM

82. θ = 135◦

Answer. 2.8
NM

83. θ = 150◦

Answer. 4
NM
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cofunctions identities, 50
complementary angles, 49
coterminal angles, 15

declination, 25
solar, 30

degree, 12

even and odd trigonometric
properties, 81

heading, 16

initial side, 12

Kūkuluokalani, 4

latitude, 12, 28
linear speed, 23
longshore drift, 62

Makali‘i, 87
measure, 12
minute, 13
moon phases, 30

nautical mile, 29
negative angle, 14

paafu, 1

period functions, 78
periodic properties, 78
positive angle, 14

quadrantal angle, 14
quadrants, 14
quotient identities, 48

radian measure
of angles, 17

ray, 12
reciprocal identities, 47
reference angle, 67
reference course, 47

second, 13
solar declination, 30
speed

angular, 23
linear, 23

standard position, 14
Star Compass

Cook Island, 9
Hawaiian, 4
Māori, 9
paafu, 1
Sāmoan, 9

stick chart, 7
swash, 61

terminal side, 12
triangles

solving, 52
trigonometric functions, 34

circle of radius r, 43
of angles, 35
of real numbers, 34
ratios, 47
special, 49
special values, 40

unit circle, 33
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