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Core Standards

The curriculum in this book aligns with the Common Core State Standards:
thecorestandards.org3

• High School: Algebra

◦ Creating Equations.4

■ Create equations that describe numbers or relationships.
• HSA.CED.A.2: Create equations in two or more variables to

represent relationships between quantities; graph equations
on coordinate axes with labels and scales.(Section 2.3)

• High School: Functions

◦ Interpreting Functions5

■ Analyze functions using different representations.
• HSF.IF.C.7: Graph functions expressed symbolically and

show key features of the graph, by hand in simple cases and
using technology for more complicated cases. (Section 2.1,
Section 2.2)

• HSF.IF.C.7.e: Graph exponential and logarithmic functions,
showing intercepts and end behavior, and trigonometric func-
tions, showing period, midline, and amplitude. (Section 2.1,
Section 2.2)

◦ Building Functions.6

■ Build a function that models a relationship between two quanti-
ties.
• HSF.BF.A.1: Write a function that describes a relationship

between two quantities. (Section 2.3)
■ Build new functions from existing functions.

• HSF.BF.B.3: Identify the effect on the graph of replacing
f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific
values of k (both positive and negative); find the value of
k given the graphs. Experiment with cases and illustrate
an explanation of the effects on the graph using technol-
ogy. Include recognizing even and odd functions from their
graphs and algebraic expressions for them. (Subsection 2.1.4,
Subsection 2.2.9)

3http://www.thecorestandards.org/
4https://www.thecorestandards.org/Math/Content/HSA/CED/
5https://www.thecorestandards.org/Math/Content/HSF/IF/
6https://www.thecorestandards.org/Math/Content/HSF/BF/
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◦ Trigonometric Functions.7

■ Extend the domain of trigonometric functions using the unit
circle.
• HSF.TF.A.1: Understand radian measure of an angle as the

length of the arc on the unit circle subtended by the angle.
(Definition 1.2.19)

• HSF.TF.A.2: Explain how the unit circle in the coordinate
plane enables the extension of trigonometric functions to
all real numbers, interpreted as radian measures of angles
traversed counterclockwise around the unit circle. (Subsec-
tion 1.3.2)

• HSF.TF.A.3: Use special triangles to determine geometri-
cally the values of sine, cosine, tangent for π/3, π/4 and
π/6, and use the unit circle to express the values of sine,
cosine, and tangent for x, π + x, and 2π − x in terms of their
values for x, where x is any real number. (Subsection 1.4.2,
Subsection 1.5.3)

• HSF.TF.A.4: Use the unit circle to explain symmetry (odd
and even) and periodicity of trigonometric functions. Model
periodic phenomena with trigonometric functions. (Subsec-
tion 1.5.4, Subsection 1.5.7)

■ Model periodic phenomena with trigonometric functions.
• HSF.TF.B.5: Choose trigonometric functions to model pe-

riodic phenomena with specified amplitude, frequency, and
midline. (Subsection 2.1.4, Section 2.3)

• HSF.TF.B.6: Understand that restricting a trigonometric
function to a domain on which it is always increasing or
always decreasing allows its inverse to be constructed. (Sub-
section 2.4.1)

• HSF.TF.B.7: Use inverse functions to solve trigonometric
equations that arise in modeling contexts; evaluate the so-
lutions using technology, and interpret them in terms of
the context. (Exercise 2.1.5.46, Exercise Group 2.1.5.47–50,
Exercise Group 2.2.10.37–42, Exercise Group 2.2.10.43–52,
Example 2.4.18, Example 2.4.19, Example 2.4.17)

■ Prove and apply trigonometric identities.
• HSF.TF.C.8: Prove the Pythagorean identity sin2 θ+cos2 θ =

1 and use it to find sin θ, cos θ, or tan θ given sin θ, cos θ, or
tan θ and the quadrant of the angle. (Definition 1.5.20)

• HSF.TF.C.9: Prove the addition and subtraction formulas
for sine, cosine, and tangent and use them to solve problems.
(Proof 3.2.1.1, Example 3.2.10, Proof 3.2.3.1)

• High School: Geometry

◦ Similarity, Right Triangles, and Trigonometry Define trigonometric
ratios and solve problems involving right triangles.8

■ Define trigonometric ratios and solve problems involving right
triangles.

7https://www.thecorestandards.org/Math/Content/HSF/TF/
8https://www.thecorestandards.org/Math/Content/HSG/SRT/
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• HSG.SRT.C.6: Understand that by similarity, side ratios in
right triangles are properties of the angles in the triangle,
leading to definitions of trigonometric ratios for acute angles.
(Definition 1.4.1)

• HSG.SRT.C.7: Explain and use the relationship between the
sine and cosine of complementary angles. (Definition 1.4.7,
Remark 1.4.9)

• HSG.SRT.C.8: Use trigonometric ratios and the Pythagorean
Theorem to solve right triangles in applied problems. (Sub-
section 1.4.6)

■ Apply trigonometry to general triangles
• HSG.SRT.D.9: Derive the formula Area = 1

2 ab sin(C) for
the area of a triangle by drawing an auxiliary line from a
vertex perpendicular to the opposite side. (Definition 4.1.11)

• HSG.SRT.D.9: Prove the Laws of Sines and Cosines and use
them to solve problems. (Subsection 4.1.1, Subsection 4.2.1)

• HSG.SRT.D.9: Understand and apply the Law of Sines and
the Law of Cosines to find unknown measurements in right
and non-right triangles (e.g., surveying problems, resultant
forces).

◦ Circles.9

■ Find arc lengths and areas of sectors of circles
• HSG.C.B.5: Derive using similarity the fact that the length

of the arc intercepted by an angle is proportional to the
radius, and define the radian measure of the angle as the con-
stant of proportionality; derive the formula for the area of a
sector. (Definition 1.2.19, Theorem 1.2.26, Definition 1.2.29)

9https://www.thecorestandards.org/Math/Content/HSG/C/

https://www.thecorestandards.org/Math/Content/HSG/C/
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Chapter 1

Trigonometric Functions

1.1 Pacific Island Navigation
For centuries, voyagers have navigated vast distances across the Pacific, long
before the use of magnetic compasses or modern instruments. They relied on
observations of celestial bodies, such as stars and the sun, as well as natural
elements like ocean patterns, winds, bird behaviors, and other environmental
cues to determine their position relative to known landmarks such as islands,
reefs, and continents. Over time, much of this traditional navigational knowledge
was lost in many parts of the Pacific. However, some islands, particularly in
Micronesia and on Taumako Island in the Solomon Islands, managed to preserve
the art and science of traditional navigation. These places continued to uphold
the practice, teaching new generations to build ocean-going canoes and develop
navigational skills based on profound knowledge of the natural world.

1.1.1 Micronesia
Navigators in Micronesia utilize the paafu mat or map (shown in Figure 1.1.1).
It is often misunderstood and misinterpreted as a Star “Compass” due to its
use of stars and constellations for direction finding. However, paafu serves a
different purpose and is not equivalent to the cardinal directionality marked
by compasses (North, South, East, and West). Instead, it is a learning and
teaching tool designed to teach the locational positions of islands, locales, or
canoes relative to other places. This is achieved by observing the rising and
setting points of stars and constellations, which act as markers for different
locations.

1
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Figure 1.1.1 Paafu mat or map - Photo courtesy of Kānehūnāmoku Voyaging
Academy.

A constellation is a cluster of stars whose shapes and meanings reflect and
carry cultural significance. In modern society, a well-known cluster of stars
in the southern hemisphere, shaped like a cruciform, is commonly referred to
as the “Southern Cross.” However, for the people of Polowat and others from
the Central Carolines region in the western Pacific, this same constellation
resembles the triggerfish and is named accordingly.

In the Central Carolines, the general location in the celestial sky where
stars appear to rise after sundown is referred to as “tan.” This term is often
mistakenly translated as “east” due to the modern association of stars (like
the sun) with “rising” in the east. However, it is important to note that “tan”
means “rising” and not “eastward.”
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Figure 1.1.2 The paafu, or Micronesian Star Compass. Stars are identified
using the Polowat dialect of the Chuukese language as it is used by members of
the Weriyeng School of navigation.

Figure 1.1.2 orients the cardinal direction known as “east” at the top of the
page, and so the top half of this diagram is also identified as “tan” – where
stars appear to rise. The diagram illustrates the apparent path of stars across
the sky each night and day (though most stars are not visible during the day)
and throughout a year. In this system, the rising and presence of specific stars
mark months, and these same stars will eventually set at a point horizontally
opposite to where they rose. This point corresponds to the cardinal direction
known as “west,” which is referred to as “tolon” – the area where the stars “set”
or go down.

In the paafu “map” shown in Figure 1.1.2, a canoe is placed at the center,
and the star called Mailap (Altair) marks due east. The time and location
when Mailap rises are referred to as “Tan Mailap” (rising Mailap), while the
time and place it sets are referred to as “Tolon Mailap” (setting Mailap). The
map’s orientation places east, or the rising points of the navigation or paafu
stars, at the top of the circle, and west, or the setting points of these stars, at
the bottom of the circle. As a map, paafu uses the rising and setting points of
stars to mark places around a given locale, which is placed at the center of the
circle. Table 1.1.3 displays the star and constellation names, provided in both
Polowat and according to the International Astronomical Union, listed in the
order of their rising during the third week of March in Polowat.
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Table 1.1.3 Star and constellation names in Polowat.

Polowat International Astronomical Union
Wenenwenenfuhmwaket Polaris (always above the horizon)
Tan Mwarikar [Mahrah-ker] Pleiades aka Seven Sisters
Tan Un [Oon] Aldebaran
Tan Uliul [Ooh-lee-ool] Orion’s Belt
Tan Harapwel [Ah-rah-pwol] Gamma Corvus
Tan Mailapenefang [My Lap in a Fang] Beta Ursa Minor in Big Dipper
Tan Up [Oop] Crux or Southern Cross at Rising
Machemeas [Matche-may-ess] Crux or S. Cross at 45◦ 1

Tan Welo [Well-Ah] Alpha Ursa Major in Big Dipper
Wenenwenenup [Wehneh wehnen Oop] Crux or S. Cross at Meridian or upright
Tan Tumur [Two More] Antares or Scorpio’s tail
Tan Maharuw [Maa-Haa-Roo] Shaula or Scorpio’s stinger
Tan Mol [Mohl] Vega
Tan Mailap [My Lap] Altair
Tan Paiefung [Pie Efung] Gamma Aquila
Tan Paior [Pie Or] Beta Aquila
Tan Ukinik [Icky Nick] Cassiopeia

Paafu can also be used to identify the direction in which moving objects,
such as canoes, or creatures such as birds, fish, and humans, are heading or
coming from. This version of paafu utilizes the Polowat dialect of the Chuukese
language, as used by members of the Weriyeng School of navigation.

1.1.2 Hawai‘i
With the aim of reviving wayfinding in Hawai‘i, Nainoa Thompson journeyed
to the island of Satawal in the Federated States of Micronesia to learn from
master navigator Mau Piailug, affectionately known as Papa Mau. Using this
knowledge, Thompson adopted the paafu method, leading to the creation of the
Hawaiian Star Compass, also referred to as the Kūkuluokalani (Figure 1.1.4).

In the star compass, featuring the figure of an ‘iwa or great frigatebird at its
center, Thompson divides the visual horizon into 32 equidistant points around
a circle, referred to as houses. Each house in the Hawaiian Star Compass
represents a distinct segment of the horizon—an arc of 11.25◦—where celestial
bodies such as the sun, stars, moon, and planets rise and set. In the same way
that we use addresses to locate homes, each celestial body has its own address
represented by these houses.

1The “Tan” prefix is not used for this position, because it is no longer rising.
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Figure 1.1.4 Hawaiian Star Compass, also known as the Kūkuluokalani.
The four cardinal points align with particular houses. Stars rise from the

horizon called Hikina (“To Arrive”) or East and set on the horizon called
Komohana (“To Enter”) or West. If you face Komohana (West) with your back
towards Hikina (East), your right will point towards ‘Ākau (“Right”) or North,
and your left will point towards Hema (“Left”) or South. The Hawaiian Star
Compass is oriented with North at the top.

The star compass is divided into four quadrants, each named after winds in
Hawai‘i. Ko‘olau is the Northeast quadrant named for the trade winds; Ho‘olua
is the Northwest quadrant, Kona is the Southwest quadrant; and Malanai is
the Southeast quadrant.

Each house on the star compass is given a name. The corresponding houses
in the east and west share the same name. Starting from the east or west and
moving northwards and southwards, the first house on either side of Hikina
(East) and Komohana (West) is called Lā (Sun). It is followed by ‘Āina (Land),
Noio (Tern), Manu (Bird), Nālani (Heavens), Nā Leo (Voices), and Haka
(Empty). The 32 houses in the Hawaiian Star Compass correspond to the
points of the 32-wind compass rose (Table 1.1.5).
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Table 1.1.5 The houses of the Hawaiian Star Compass and the corre-
sponding points on the 32-wind compass rose.

Star Compass 32 Point Compass Star Compass 32 Point Compass

House Symbol Name House Symbol Name

Hikina E East Komohana W West
Lā Ko‘olau EbN East by North Lā Kona WbS West by South
‘Āina Ko‘olau ENE East-northeast ‘Āina Kona WSW West-southwest
Noio Ko‘olau NEbE Northeast by East Noio Kona SWbW Southwest by West
Manu Ko‘olau NE Northeast Manu Kona SW Southwest
Nālani Ko‘olau NEbN Northeast by North Nālani Kona SWbS Southwest by South
Nā Leo Ko‘olau NNE North-northeast Nā Leo Kona SSW South-southwest
Haka Ko‘olau NbE North by east Haka Kona SbW South by West
‘Ākau N North Hema S South
Haka Ho‘olua NbW North by West Haka Malanai SbE South by East
Nā Leo Ho‘olua NNW North-northwest Nā Leo Malanai SSE South-southeast
Nālani Ho‘olua NWbN Northwest by North Nālani Malanai SEbS Southeast by South
Manu Ho‘olua NW Northwest Manu Malanai SE Southeast
Noio Ho‘olua NWbW Northwest by West Noio Malanai SEbE Southeast by East
‘Āina Ho‘olua WNW West-northwest ‘Āina Malanai ESE East-southeast
Lā Ho‘olua WbN West by North Lā Malanai EbS East by South

Celestial bodies move along parallel paths across the sky from East to
West, rising and setting in the same house, remaining in the same hemisphere.
For example, if a star arrives in the Ko‘olau (northeast) quadrant in the star
house ‘Āina, it will arc overhead, staying in the northern hemisphere, and
enter the horizon in the same house it arrived in, ‘Āina, but in the Ho‘olua
(northwest) quadrant (see Figure 1.1.6). Similarly, if a star arrives in the
Malanai (southeast) quadrant in the house Lā, it will remain in the southern
hemisphere as it arcs overhead and enters the horizon in the house Lā in the
Kona (southwest) quadrant.

Standalone

Figure 1.1.6 In the celestial sphere, stars rise in the east, arc across the sky,
and set in the west. Each star will both rise and set in the same house. If you
are viewing the PDF or a printed copy, you can scan the QR code or follow the
“Standalone” link to explore the interactive version online.

The star compass also serves as a guide for determining direction based
on wind and ocean swells. As the wind and swells move, they intersect the
star compass diagonally. For example, if a wind blows from the house Noio
in the Ko‘olau (northeast) quadrant, it will blow in the direction of the Kona
(southwest) quadrant and eventually exit in the same house, Noio.

https://www.kamuelayong.com/trigonometry/geogebra-celestial-sphere.html
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Observations play a key role in determining direction using the star compass.
At night, Thompson relies on approximately 220 stars, memorizing where they
rise and set on the horizon to navigate. During the day, we can use the sun’s
position on the horizon to gauge direction, but this method is only effective
when the sun is near the horizon at sunrise and sunset. Alternatively, one
can memorize the wind and wave directions, checking for any changes between
sunrise and sunset to establish their current direction.

The canoe itself can serve as a compass, as shown in Figure 1.1.7. From the
navigator’s seat on either corner of the stern (back) of the deck, we can observe
features such as the rising sun and mark their positions on the Star Compass
located on the canoe. It is important to note that the locations of the houses
on this Star Compass are in relation to the canoe, not to a fixed map. For
instance, only when the canoe is pointed towards the north will Hikina (East)
be the house to the right. Depending on the canoe’s orientation, at other times,
Hikina may appear several houses further up the deck.

Figure 1.1.7 The deck of a canoe can be used as a compass to help crew and
navigators.

1.1.3 Marshall Islands
The Marshallese people use stick charts as navigational tools. These stick
charts are constructed using a lattice-like structure made from curved and
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straight sticks, typically formed by tying together the midribs of coconut fronds.
The curved sticks represent the islands and how they bend and refract the
ocean swells, while the straight sticks symbolize the major wave patterns in the
surrounding waters.

The shells placed on the sticks indicate the relative locations of islands
within the Marshall Islands archipelago. These shells serve as markers, helping
navigators remember the positions of specific islands along their voyages.

Each stick chart is unique to its creator, reflecting their individual knowledge
and experiences. The personalization of the stick charts allows navigators to
develop a deep understanding of the ocean currents, wave patterns, and island
locations in their specific region.

The stick charts serve as mental maps or navigational aids, allowing expe-
rienced navigators to visualize and recall the complex information while on
their journeys. Navigators would memorize the stick charts, internalizing the
knowledge embedded within them, enabling them to navigate the open ocean.

Figure 1.1.8 Marshallese stick chart.

1.1.4 Elsewhere in the Pacific
In addition to the star compass, many cultures across the Pacific use a wind
compass. Similar to the star compass, the wind compass is also a mental
construct.

Other Pacific Island cultures have also adapted the modern Hawaiian Star
Compass to their languages, as illustrated in Figure 1.1.9.
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Kāina
Ngoi

Man
u

Ng
ā
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Figure 1.1.9 Examples of Star Compasses across the Pacific.

1.1.5 Exercises
1. Who developed the Hawaiian Star Compass?

Answer. Nainoa Thompson
2. The Hawaiian Star Compass was based on the Micronesian Star Compass,

known as the paafu. Who shared the paafu with the Hawaiians?
Answer. Mau Piailug or Papa Mau

3. According to the Hawaiian Star Compass, what is the name for

(a) North

Answer. ‘Ākau

(b) East

Answer. Hikina

(c) South

Answer. Hema

(d) West

Answer. Komohana
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4. What is the Hawaiian name for winds in the

(a) Northeast quadrant

Answer. Ko‘olau

(b) Southeast quadrant

Answer. Malanai

(c) Southwest quadrant

Answer. Kona

(d) Northwest quadrant

Answer. Ho‘olua
Exercise Group. For each direction, identify the Hawaiian names of the
corresponding house and quadrant in the Hawaiian Star Compass.

5. Northwest by North
Answer. Nālani Ho‘olua

6. East-northeast
Answer. ‘Āina Ko‘olau

7. North-northwest
Answer. Nā Leo Ho‘olua

8. Southeast
Answer. Manu Malanai

9. South by West
Answer. Haka Kona

10. East by South
Answer. Lā Malanai

11. Southwest by West
Answer. Noio Kona

12. Northeast by North
Answer. Nālani Ko‘olau

13. South-southeast
Answer. Nā Leo Malanai

14. West-southwest
Answer. ‘Āina Kona

Exercise Group. Identify the corresponding point on the 32-wind compass
for each house on the Hawaiian Star Compass.

15. Nā Leo Kona
Answer. South-southwest

16. ‘Āina Malanai
Answer. East-southeast

17. ‘Āina Ho‘olua
Answer. West-northwest

18. Lā Ko‘olau
Answer. East by North

19. Manu Ko‘olau
Answer. Northeast

20. Haka Malanai
Answer. South by East

21. Nālani Kona
Answer. Southwest by
South

22. Haka Ho‘olua
Answer. North by West

23. Noio Ho‘olua
Answer. Northwest by West

24. Noio Ko‘olau
Answer. Northeast by East

25. The winter solstice in the southern hemisphere occurs around June 22. It
is the time when the sun is at its lowest elevation in the sky, resulting in
the shortest daylight of the year. During the winter solstice, the sun rises
from its northernmost position, ‘Āina Ko‘olau. In which house does the
sun set during the winter solstice in the southern hemisphere?
Answer. ‘Āina Ho‘olua

26. The winter solstice in the northern hemisphere occurs around December
22 when the sun rises from its southernmost position, ‘Āina Malanai. In
which house does the sun set during the winter solstice in the northern
hemisphere?
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Answer. ‘Āina Kona
27. Wind is coming from Nā Leo Kona. In which direction is the wind

blowing?
Answer. Nā Leo Ko‘olau

28. Current is coming from Noio Ho‘olua. In which direction is the current
heading?
Answer. Noio Malanai
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1.2 Angles and Their Measure
One method people use to identify their position is by looking at the latitude.
These imaginary lines form circles around the Earth and run parallel to the
Equator. The latitude of a place is defined as the angle between a line drawn
from the center of the Earth to that point and the equatorial plane. For any
point in the Northern Hemisphere, a navigator can measure their latitude by
determining the angle that Hōkūpa‘a (also known as Kūmau, Wuliwulifasmughet,
Fuesemagut, North Star, or Polaris) makes with the horizon.

Horizon
Angle of Hōkūpa‘a

⋆⋆Hokupa‘a

During voyages, knowing the correct angles can make the difference between
reaching our destination or missing it. Navigators carefully observe angles on
the Hawaiian Star Compass to determine the entry and exit points of celestial
bodies in the sky, as well as the direction of wind and current. In this section,
we will explore the properties of angles and their measure.

Definition 1.2.1 A ray is a part of a line that begins at a point O and extends
in one direction.

RayO

♢

Definition 1.2.2 We can create an angle, θ, by rotating rays. First, we begin
with two rays lying on top of each other and beginning at O. We let one ray be
fixed and will rotate the second ray about the point O. The ray that is fixed is
called the initial side and the ray that is rotated is called the terminal side.

Initial Side

Terminal Side

O

θ

♢

Remark 1.2.3 Angles are often measured using Greek letters. The commonly
used Greek letters include θ, ϕ, α, β, and γ.

1.2.1 Degree
The measure of an angle is the amount of rotation from the initial side to
the terminal side. One unit of measuring angles is the degree. One degree,
denoted by 1◦, is 1

360 of a complete circular revolution, so one full revolution is
360◦.
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The Hawaiian Star Compass consists of 32 houses, each spanning 11.25◦

( 360◦

32 ). Assuming due East corresponds to 0◦ and the center of the House of
Hikina points due East, the border between Hikina and Lā Ko‘olau will be half
the angle of the house, 5.625◦ ( 11.25◦

2 ). The angles for the other boundaries on
the Hawaiian Star Compass are shown in Figure 1.2.4.
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Figure 1.2.4 The Star Compass with the angles indicating the boundaries for
each house.

Although decimals are commonly used to represent fractional parts of a
degree, traditionally, degrees were represented in minutes and seconds. One
minute or arc minute, denoted as 1′, is equal to 1

60 degrees, and one second
or arc second, denoted as 1′′, is equal to 1

60 minutes.

Remark 1.2.5 Conversion Between Degree, Minutes, and Seconds.

1◦ = 60′ 1′ =
(

1
60

)◦

1′′ =
(

1
3600

)◦

1◦ = 3600′′ 1′ = 60′′ 1′′ =
(

1
60

)′

Example 1.2.6 Convert an angle from decimal degrees to degrees/
minutes/seconds. In the Star Compass (Figure 1.2.4), the angle between
the houses Manu Ho‘olua (northwest) and Noio Ho‘olua (northwest by west)
measures 140.625◦. Represent this angle in degrees, minutes, and seconds.
Solution. First we will convert 0.625◦ to minutes using the conversion 1◦ =
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60′,

0.625◦ = 0.625◦ · 60′

1◦ = 37.5′.

Since 1′ = 60′′, we can convert 0.5′ to seconds: 0.5′ = 0.5′ · 60′′

1′ = 30′′.
So 140.625◦ = 140◦37′30′′. □

Example 1.2.7 Convert an angle from degrees/minutes/seconds to
decimal degrees. Convert 263◦24′45′′ to decimal degrees.
Solution. We will first convert 24′ and 45′′ to degrees.

24′ = 24 · 1′ = 24 ·
(

1
60

)◦

= 0.4◦

and
45′′ = 45 · 1′′ = 45 ·

(
1

3600

)◦

= 0.0125◦.

So 263◦24′45′′ = 263◦ + 24′ + 45′′ = 263◦ + 0.4◦ + 0.0125 = 263.4125◦. □

Definition 1.2.8 If an angle is drawn on the xy-plane, and the vertex is at
the origin, and the initial side is on the positive x-axis, then that angle is said
to be in standard position. If the angle is measured in a counterclockwise
rotation, the angle is said to be a positive angle, and if the angle is measured
in a clockwise rotation, the angle is said to be a negative angle.

x

y

positive angle

x

y

negative angle

♢

Definition 1.2.9 When an angle is in standard position, the terminal side
will either lie in a quadrant or it will lie on the x-axis or y-axis. An angle is
called a quadrantal angle if the terminal side lies on x-axis or y-axis. The
two axes divide the plane into four quadrants. In the Cartesian plane, the four
quadrants are Quadrant I, II, III, and IV. The corresponding quadrants of Star
Compass are Ko‘olau (NE), Ho‘olua (NW), Kona (SE), and Malanai (SW).
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x

y

I
Ko‘olau

II
Ho‘olua

III
Kona

IV
Malanai

♢

Definition 1.2.10 Coterminal angles are angles in standard position that
have the same initial side and the same terminal side. Any angle has infinitely
many coterminal angles because each time we add or subtract 360◦ from it, the
resulting angle has the same terminal side. ♢

Example 1.2.11 Coterminal angles. 90◦ and 450◦ are coterminal angles
since 450◦ − 360◦ = 90◦. □

To determine the quadrant in which an angle lies, we add or subtract one
revolution (360◦) until we obtain a coterminal angle between 0◦ and 360◦. The
quadrant where the terminal side lies is the quadrant of the angle. Quadrantal
angles do not lie in any quadrant.

Example 1.2.12 Determine the corresponding house and quadrant
in the Star Compass. Determine the quadrant in which each angle lies and
name the corresponding house and quadrant in the Star Compass (Figure 1.2.4).

(a) 140◦

Solution. Since 90◦ < 140◦ < 180◦, 140◦ lies in Quadrant II, or Manu
Ho‘olua.

(b) −770◦

Solution. Since −770◦ < 0◦, we first add 3 × 360 to −770◦ to obtain
an angle 0◦ and 360◦,

−770◦ + 3 × 360◦ = 310◦.

So 310◦ and −770◦ are coterminal. Since 270◦ < 310◦ < 360◦, 310◦ lies
in Quadrant IV, or Manu Malanai.

(c) 923◦

Solution. Since 923◦ > 360◦ we begin by subtracting 2 × 360◦

923◦ − 2 × 360◦ = 203◦.

So 203◦ and 923◦ are coterminal. Since 180◦ < 203◦ < 270◦, 923◦ lies in
Quadrant III or ‘Āina Kona.

□
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Example 1.2.13 Determine the corresponding quadrant given its
location in the Star Compass. What is the corresponding quadrant for
Nālani Kona?
Solution. Locating Nālani Kona in the Star Compass, we see it is in Quadrant
III. □

Definition 1.2.14 A central angle is an angle formed at the center of a circle
by two radii.

O

Central
Angle

♢

Remark 1.2.15 Heading and Azimuth. In navigation, the direction a
wa‘a is pointed towards is referred to as the heading. Unlike in trigonometry,
where it is conventional to define an angle in standard position, with 0◦ lying
along the positive x-axis, in navigation, North corresponds to a heading of 0◦

and positive angles are measured in a clockwise rotation (see Figure 1.2.16).

North

0◦ or 360◦
NE

45◦

East90◦

SE
90◦

South

180◦SW

225◦

West 270◦

NW

315◦

Figure 1.2.16 The cardinal directions for headings are as follows: 0◦ (or 360◦)
points north, 90◦ points east, 180◦ points south, and 270◦ points west.

The Star Compass can now be presented in terms of heading angles, as
demonstrated in Figure 1.2.17.
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Figure 1.2.17 The Star Compass is presented in terms of heading, with the
angles indicating the boundaries for each house.

In astronomy and navigation, the azimuth and altitude are used to
determine the position of celestial bodies relative to the observer’s location.
The azimuth refers to the angular measurement of the direction of a celestial
body, typically measured from north and increasing clockwise along the horizon.
The altitude of a celestial body is its angle above the horizon, measured in
degrees. The zenith is the point directly overhead an observer, and a celestial
body located at the zenith has an altitude of 90◦. See Figure 1.2.18.

In navigation, “heading” typically refers to the direction in which an object,
such as a canoe or wind, is pointed. In contrast, “azimuth” pertains to the
angular measurement of celestial bodies relative to the horizon. Both “heading”
and “azimuth” measure angles in degrees, starting from north and progressing
clockwise. Unless specified otherwise, this book uses Figure 1.2.4 for the angles
of the Star Compass; for heading or azimuth angles, refer to Figure 1.2.17.
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Observer

Zenith

North

Star

Altitude

Azimuth
Horizon

Figure 1.2.18 The azimuth is the angle measured along the horizon from north
to the star’s projection, and the altitude is the angle from the horizon up to
the star. Together, these angles determine the star’s location relative to the
observer.

1.2.2 Radian
Another way to measure an angle is with radians, which measure the arc of a
circle that is formed from an angle.

Definition 1.2.19 Definition of a Radian. The radian measure of
a central angle in a circle is the ratio of the length of the arc on the circle
subtended by the angle to the radius. If r is the radius of the circle, θ is the
angle, and s is the arc length, then we have the following

θ = s

r
.

A radian is abbreviated by rad.
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x

y

s

r
θ

♢
The measure of a central angle obtained when the length of the arc is also

equal to the radius, r, is called one radian (1 rad). Similarly, if θ = 2 rad, then
the arc length equals 2r.

x

y

r

r

θ=1 rad
x

y

r

r

r

θ=2 rad

The circumference of a circle is C = 2πr. This means that the circumference
is 2π ≈ 6.28 times the radius. Consequently, if we were to use a string of length
equal to the radius, we would need six such strings plus a fractional piece of
the string, as shown in Figure 1.2.20.
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x

y

r

r

r

r

r

r

0 radians,2π ≈ 6.28 radians

1 radian2 radians

3 radians

4 radians
5 radians

6 radians
fractional piece

Figure 1.2.20 One rotation of the unit circle is 2π ≈ 6.28 radians.

Remark 1.2.21 Relationships Between Degrees and Radians. If a circle
with radius 1 is drawn, it has 360◦, and the full arc length is the circumference,
which is 2π. Therefore,the relationship between degrees and radians is:

360◦ = 2π radian, or 180◦ = π radian

1 radian = 180◦

π
,

1◦ = π

180 radian.

Remark 1.2.22 Converting Between Degrees and Radians.

1. To convert degrees to radians, multiply by 2π radians
360◦ or π radian

180◦ .

2. To convert radians to degrees, multiply by 360◦

2π radians or 180◦

π radian .

Example 1.2.23 Express 45◦ in radians.

Solution. 45◦ = 45◦
(

2π radians
360◦

)
= π

4 radians □

Example 1.2.24 Express 5π

6 in degrees.

Solution. 5π

6 rad = 5π

6 rad
(

360◦

2π rad

)
= 150◦ □

Using this method, we obtain Table 1.2.25 of common angles used in
trigonometry and the corresponding radian and degree measures.
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Table 1.2.25 Commonly Used Angles in Trigonometry: Degrees and
Radians.

Radians 0 π

6
π

4
π

3
π

2
2π

3
3π

4
5π

6 π

Degrees 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦

Radians π
7π

6
5π

4
4π

3
3π

2
5π

3
7π

4
11π

6 2π

Degrees 180◦ 210◦ 225◦ 240◦ 270◦ 300◦ 315◦ 330◦ 360◦

1.2.3 Arc Length
Recall that the definition of a radian is the ratio of the arc length to the radius
of a circle, θ = s

r . By rearranging this formula, we can obtain a formula for the
arc length of a circle.

Theorem 1.2.26 In a circle of radius r, the arc length, s, subtended by a
central angle (in radians), θ, is

s = rθ.

If θ is given in degrees, then s = 2πr ·
(

θ

360◦

)
.

Example 1.2.27 Find the length of an arc of a circle with radius 10 cm
subtended by an angle of 2 radians.
Solution. Using the arc length formula we get s = 10cm · 2rad = 20cm. □

Example 1.2.28 Kiritimati, also known as Christmas Island, is an atoll in
the Republic of Kiribati. Kiritimati’s location west of the International Date
Line makes it one of the first places in the world to welcome the New Year,
while Hawai‘i is one of the last places. Although Kiritimati and Moloka‘i
share the same longitude at 157◦12′ west (meaning Moloka‘i is directly north
of Kiritimati), both islands are 24 hours apart. For example, if the time on
Moloka‘i is 3:00 pm on Thursday, then at that same moment it is 3:00 pm
on Friday in Kiritimati. Find the distance between Kiritimati ( 1◦45′ north
latitude) and Moloka‘i (21◦08′ north latitude). Assume the radius of Earth is
3,960 miles and that the central angle between the two islands is the difference
in their laititudes.
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O

N

S

Moloka‘i

21◦08′N

1◦45′N

157◦12′W

Kiritimati

r

r
θs

Solution. The measure of the central angle between the two islands is

θ = 21◦08′ − 1◦45′

= 19◦23′

= 19◦ + 23
60

◦

≈ 19.3833◦.

To find the distance, we use Theorem 1.2.26 to find the arc length:

s = 2πr ·
(

θ

360◦

)
≈ 2π · (3, 960 miles)19.3833◦

360◦ ≈ 1, 340 miles.

So the distance between Kiritimati and Moloka‘i is approximately 1,340
miles. □

1.2.4 Area of a Sector of a Circle
Definition 1.2.29 Area of a Sector. The area of the sector of a circle
of radius r formed by a central angle of θ is

A = θ

360◦ · π · r2, when θ is in degrees

A = 1
2r2θ, when θ is in radians.

♢

Notice the ratio θ

360◦ is the proportion of the angle θ (in degrees) to one
complete circle. Additionally, the circumference of a circle is given by 2πr.
Therefore, the arc length is simply the proportion of the central angle to the
whole circle multiplied by the circumference of the circle.

s = arc length = (proportion of circle) · (circumference) =
(

θ

360◦

)
· (2πr)

Similarly, the area of a circle is given by πr2. So the area of a sector is the
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proportion of the central angle to the whole circle multiplied by the area of the
circle.

A = area of sector = (proportion of circle) · (area of circle) =
(

θ

360◦

)
·
(
πr2)

Theorem 1.2.30 Given a circle of radius r and a central angle θ, the arc
length and area of the sector formed by θ can be expressed as the proportion of
the angle to the full circle multiplied by the circumference and area of the circle,
respectively.

s = (proportion of circle) · (circumference) =
(

θ

360◦

)
· (2πr)

and

A = (proportion of circle) · (area of circle) =
(

θ

360◦

)
·
(
πr2)

.

Example 1.2.31 When sailing, the wa‘a Hōkūle‘a cannot make headway by
sailing directly into the wind. She can only sail beyond 67◦ in either direction
from the wind (Figure 1.2.32). If Hōkūle‘a sails 50 miles, what is the area of the
sector that cannot be sailed? Round your answer to the nearest square mile.

67◦67◦

Downwind

Upwind

Figure 1.2.32 Hōkūle‘a cannot sail within 67◦ into the direction of the wind.

Solution. The angle is θ = 2 · 67◦ = 134◦ and the radius is r = 50 miles. So
the area is given by

A = θ

360◦ π · r2 = 134◦

360◦ π · 502 ≈ 2, 923 square miles.

□
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1.2.5 Angular Velocity and Linear Speed
Consider an object moving along a circle as shown below. There are two ways
to describe the circular motion of this object: linear speed which measures the
distance traveled; and angular speed which measures the rate at which the
central angle changes.

s

r
θ

Definition 1.2.33 Linear Speed. Suppose an object moves along a circle
with radius r, and let θ (measured in radians) be the angle traversed in time t.
Let s be the distance the object traveled in time t. Then the linear speed, v,
of the object is given by

v = s

t
.

♢

Definition 1.2.34 Angular Speed. Suppose an object moves along a circle.
Let θ (measured in radians) be the angle traversed by the object in time t. The
angular speed, ω, of the object is given by

ω = θ

t
.

♢
Notice that we can rearrange the angular speed to get θ = ωt. Since s is an

arc length, we have s = rθ, and thus we can write the linear speed as

v = s

t
= rθ

t
= rωt

t
= rω.

Definition 1.2.35 Linear Speed. Suppose an object moves along a circle
with radius r and an angular speed ω (measured in radians per unit time).
Then the linear speed, v, of the object is given by

v = rω.

♢

Example 1.2.36 Une.
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One method a wa‘a uses to change direction is with the hoe uli, or the
steering paddle. When a sharp turn is needed for maneuvers such as tacking,
the steersperson will turn the handle of the hoe uli in a circular motion, as a
lever to scoop the paddle in the water and change the heading of a vessel. This
move, called une (pronounced “oo-neh,” though it is often mispronounced as
“oo-nee”), literally translates to “lever.”

Standalone

Figure 1.2.37 A wa‘a (canoe) can change directions by rotating the hoe uli
(steering sweep) in a process known as une. If you are viewing the PDF or
a printed copy, you can scan the QR code or follow the “Standalone” link to
watch the video online.

If the steerperson is performing an une at a rate of 25 rotations per minute
and the radius of the circular movement is 2 feet, calculate:

(a) The angular speed measured in radians per minute.

Solution. We are given that the angular speed is ω = 25 revolutions
per minute. To convert our angular speed to radians per minute, we use
the fact that one revolution is 2π radians to get

ω = 25 revolution
minute = 25 revolution

minute · 2π
radians

revolution = 50π
radians
minute .

Thus the hoe uli is moving at an angular speed of 50π radians per minute.

https://www.kamuelayong.com/trigonometry/youtube-une-video.html
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(b) The linear speed of the hoe uli in miles per hour (round your answer to
two decimal places).

Solution. Since the radius is r = 2 ft and the angular speed is 50π
radians per minute, we can use Definition 1.2.35 to calculate the linear
speed

v = rω = 2ft · 50π
radians

min · mile
5280ft · 60min

hr ≈ 3.57miles
hour .

Thus the steersperson is moving the hoe uli at a linear speed of 3.57 mph.

□

1.2.6 Exercises

Exercise Group. Given an angle, θ, identify the house and quadrant on the
Hawaiian Star Compass.

1. θ = 336◦

Answer. ‘Āina
Malanai

2. θ = 240◦

Answer. Nālani
Kona

3. θ = 35◦

Answer. Noio
Ko‘olau

4. θ = 221◦

Answer. Manu
Kona

5. θ = 108◦

Answer. Nā
Leo Ho‘olua

6. θ = 190◦

Answer. Lā
Kona

7. θ = 323◦

Answer. Noio
Malanai

8. θ = 158◦

Answer. ‘Āina
Ho‘olua

9. θ = 172◦

Answer. Lā
Ho‘olua

Exercise Group. Convert the given angle θ to a decimal in degrees rounded
to two decimal places.

10. θ = 20◦50′30′′

Answer. 20.84◦
11. θ = 80◦25′16′′

Answer. 80.42◦
12. θ = 7◦22′38′′

Answer. 7.38◦

13. θ = 330◦14′12′′

Answer. 330.24◦
14. θ = 168◦22′26′′

Answer. 168.37◦
15. θ = 49◦27′12′′

Answer. 49.45◦

16. θ = 327◦38′58′′

Answer. 327.65◦
17. θ = 281◦48′50′′

Answer. 281.81◦
18. θ = 134◦53′47′′

Answer. 134.90◦

19. Sirius, the brightest star in the night sky, has been known by various
names in different cultures and languages around the world. In Tahiti, it is
called Taurere and is considered a zenith star as it passes directly overhead.
Taurere has a declination of −16◦42′58′′, representing its angular distance
south of the celestial equator. Express Taurere’s declination as a decimal
rounded to two decimal places.
Answer. 16.72◦

Exercise Group. Recall the Star Compass with the boundaries for each
House. Write the angles for the boundaries between the following houses in the
Ko‘olau quadrant in terms of degrees, minutes, and seconds.
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HIKINA

‘Ā
K

A
U

5.625◦

16.875◦

28.125◦
39.

375
◦

Lā

‘Āina

Noio
Man

uNā
lan

i

N
ā

Le
oH
ak

a

20. Between Hikina and Lā (5.625◦)
Answer. 5◦37′30′′

21. Between Lā and ‘Āina (16.875◦)
Answer. 16◦52′30′′

22. Between ‘Āina and Noio (28.175◦)
Answer. 28◦10′30′′

23. Between Noio and Manu (39.375◦)
Answer. 39◦22′30′′

Exercise Group. Convert the given angle θ to degrees/minutes/seconds
rounded to the nearest second and identify the house and quadrant on the
Hawaiian Star Compass.

24. θ = 258.39◦

Answer. θ = 258◦23′24′′

Haka Kona

25. θ = 212.43◦

Answer. θ = 212◦25′33′′

Noio Kona
26. θ = 244.97◦

Answer. θ = 244◦58′48′′ Nā
Leo Kona

27. θ = 93.95◦

Answer. θ = 93◦57′0′′

‘Ākau
28. θ = 135.625◦

Answer. θ = 135◦37′30′′

Manu Ho‘olua

29. θ = 162.52◦

Answer. θ = 162◦31′12′′

‘Āina Ho‘olua
30. θ = 328.21◦

Answer. θ = 328◦12′36′′

Noio Malanai

31. θ = 48.12◦

Answer. θ = 48◦7′12′′

Manu Ko‘olau
32. θ = 241.27◦

Answer. θ = 241◦16′12′′ Nā
Lani Kona

Exercise Group. Convert the given angle θ to radians, and identify the
house and quadrant on the Hawaiian Star Compass. Express your answers in
terms of π.
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33. θ = 102◦

Answer. θ = 17π
30 Haka

Ho‘olua

34. θ = 96◦

Answer. θ = 8π
15 ‘Ākau

35. θ = 190◦

Answer. θ = 19π
18 Lā Kona

36. θ = 122◦

Answer. θ = 61π
90 Nālani

Ho‘olua
37. θ = 32◦

Answer. θ = 8π
45 Noio

Ko‘olau

38. θ = 236◦

Answer. θ = 59π
45 Nālani

Kona
39. θ = 82◦

Answer. θ = 41π
90 Haka

Ko‘olau

40. θ = 228◦

Answer. θ = 19π
15 Manu

Kona
41. θ = 332◦

Answer. θ = 83π
45 ‘Āina

Malanai

Exercise Group. Draw the angle in standard position.
42. 60◦

Answer.

x

y

43. 135◦

Answer.

x

y

44. −30◦

Answer.

x

y

45. 495◦

Answer.

x

y

46. −240◦

Answer.

x

y

47. 800◦

Answer.

x

y

48. π
4

Answer.

x

y

49. 5π
6

Answer.

x

y

50. − π
3

Answer.

x

y

51. 10π
3

Answer.

x

y

52. 11π
6

Answer.

x

y

53. − 2π
3

Answer.

x

y
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Exercise Group. Convert the given angle from degrees to radians. Round
your answer to two decimal places.

54. 27◦

Answer. 0.47
55. 63◦

Answer. 1.10
56. −39◦

Answer. −0.68
57. 200◦

Answer. 3.49
58. 415◦

Answer. 7.24
59. 105◦

Answer. 1.83

Exercise Group. Convert the given angle from radians to degrees. Round
your answer to two decimal places.

60. 3π
5

Answer. 108◦
61. 8π

3
Answer. 480◦

62. − 4π
7

Answer. −102.86◦

63. 15π
4

Answer. 675◦

64. −1.5
Answer. −85.94◦

65. 3
Answer. 171.89◦

Exercise Group. Determine whether the two given angles in standard
position are coterminal.

66. 50◦, 410◦

Answer. Yes
67. −60◦, 330◦

Answer. No
68. 30◦, 1110◦

Answer. Yes
69. −210◦, 150◦

Answer. Yes
70. −807◦, 93◦

Answer. No
71. −757◦, 683◦

Answer. Yes

Exercise Group. Find an angle between 0◦ and 360◦ that is coterminal with
the given angle.

72. 405◦

Answer. 45◦
73. 600◦

Answer. 240◦
74. 1035◦

Answer. 315◦

75. −300◦

Answer. 60◦
76. 381◦

Answer. 21◦
77. −754◦

Answer. 326◦

Exercise Group. Given a circle with radius r, calculate (a) the length of the
arc subtended by a central angle θ; and (b) the area of a sector with central
angle θ. Round your answer to four decimal places.

78. r = 10 in, θ = 45◦

Answer.

(a) 7.8540 in;

(b) 39.2699 in2

79. r = 5 m, θ = 120◦

Answer.

(a) 10.4720 m;

(b) 26.1799 m2

80. r = 3 mi, θ = π
3 radians

Answer.

(a) 3.1416 mi;

(b) 4.7124 mi2

81. r = 8 cm, θ = 2 radians
Answer.

(a) 16 cm;

(b) 64 cm2

Exercise Group. At the start of this section, we learned that the latitude
of a place is the angle between a line drawn from the center of the earth to
that point and the equatorial plane. If the radius of the Earth is 3,959 miles,
calculate the arc length, s, along the surface of the earth for each value of θ.
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O
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S
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Q

Equatorθ s

82. θ = 1◦ of latitude (in miles, rounded to 2 decimals).
Answer. 69.10 miles

83. θ = 1′ of latitude (in miles, rounded to 2 decimals). A nautical
mile, frequently used in navigation, is slightly longer than a mile on
land. One nautical mile was historically defined to be the arc length
corresponding to one minute of latitude. Compare your result with
the accepted value of one nautical mile.
Answer. 1.15 miles

84. θ = 1′′ of latitude (in feet, rounded to the nearest integer). Note that
1 mile is equivalent to 5,280 feet.
Answer. 101 feet

85. The oeoe, or Hawaiian bullroarer, is made by drilling holes into a kamani
seed or coconut shell, then threading a long string through the holes to
secure it. When the oeoe is swung by the string, a whistling sound is
produced, similar to the sound of the wind on the top of mountains. If
a girl is swinging an oeoe at the end of 3 foot long rope at a rate of 180
revolutions per minute, calculate:

(a) The angular speed measured in radians per minute.

Answer. 360π radians/minute

(b) The linear speed of the shell in miles per hour (round to two decimal
places).

Answer. 38.56 miles/hour
86. The Earth completes one revolution around the Sun approximately every

365.25 days. We will assume the orbit is a circle, and that the Earth is
92.9 million miles from the Sun.

(a) How far does the Earth travel in one day, expressed as millions of
miles?

Hint. First determine the angle or proportion of a revolution that
Earth travels in one day, then calculate the arc length of Earth’s
orbit.
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Answer. 1.6 million miles

(b) How for does the Earth travel in 30 days, expressed as millions of
miles?

Answer. 47.9 million miles

(c) How far does the Earth travel in one revolution around the sun,
expressed as millions of miles?

Answer. 583.7 million miles

(d) What is the linear speed of Earth as it orbits the Sun? Express your
answer in miles per hour.

Answer. 66, 588 miles per hour
87. As the moon orbits the Earth, different parts of its surface become

illuminated by the Sun, which we call moon phases. The moon completes
one revolution about the Earth in approximately 27.3 days. If we assume
its orbit is circular and the moon is 239,000 miles from Earth, calculate
the linear speed of the moon, expressed as miles per hour.
Answer. 2,292 miles per hour

88. At 17.7◦ S latitude, the city of Nadi, Fiji is 6, 071 km from the Earth’s
axis of rotation. In 24 hours, Nadi will have traveled one revolution around
Earth or 2π · (6, 071) km. The city of Port Vila, Vanuatu lies 967 km
directly to the west of Nadi, Fiji. As the Earth rotates, how many minutes
sooner will the people in Nadi see the Sun rise than the people in Port
Vila, rounded to one decimal?
Hint. The proportion of distance between the two cities to the distance
traveled in one rotation is the same as the proportion of the time it takes
to see the sun between the two cities to time it takes to complete one
revolution.
Answer. 36.5 minutes

89. In Example 1.2.31, we learned that wa‘a cannot sail directly into the wind.
For each of the following canoes and distance traveled, determine the area
of the sector that cannot be sailed? Recall that 1 house = 11.25◦. Round
your answer to the nearest square mile.

(a) Makali‘i sails for 25 miles and cannot sail within 4 houses from the
direction of the wind.

Answer. 491 square miles

(b) Alingano Maisu sails for 15 miles and cannot sail within 3 houses
from the direction of the wind.

Answer. 133 square miles
90. Navigating by the Sun: Using Solar Declination and Rising Sun

to Orient on a Canoe. The position of the rising or setting sun changes
throughout the year. Solar declination (denoted as δ) is the angle
between the direction where the Sun rises (or sets) and due east (or due
west) on the horizon. It represents how far north or south the Sun is from
the celestial equator, projected onto the Earth’s equatorial plane. Solar
declinations to the north are positive, while those to the south are negative.
At the Equinoxes (around March 20th and September 22nd), the solar
declination is 0◦ (δ = 0◦), as the Sun is directly above the equator. During
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the December solstice, around December 22, the Sun rises from its most
southern position, 23.5 degrees south of due east (δ = −23.5◦), and during
the June solstice, around June 22, the Sun rises from its most northern
position, 23.5 degrees north of due east (δ = 23.5◦).

A navigator can use their knowledge of the rising sun to help orient
themselves. For example, on May 22, the solar declination is δ = 20◦16′.
If the navigator identifies where the Sun rises on the horizon during the
Equinox, she can measure 20◦16′ south of that point to identify East and
then orient herself accordingly.

(a) What is the azimuth of the Sun on May 22? Remember, the azimuth
is the angular measurement from North, measuredclockwise.

Answer. 69◦44′

(b) What house is the sun rising in?

Answer. ‘Āina Ko‘olau

(c) What house does the sun set in?

Hint. Celestial bodies rise and set in the same house but different
quadrants.

Answer. ‘Āina Ho‘olua

(d) If the canoe is sailing with the rising sun on the port side (the left
side of the canoe when facing forward), and the navigator measures
the angle between the direction of the canoe and the sun as 90◦,
what is the heading of the canoe? Recall that heading is the angle
measured clockwise from North.

Answer. 159◦44′

(e) What house is the canoe sailing in?

Answer. Nā Leo Malanai
91. Swells are one of the most consistent navigational tools used to keep on

a course because they can remain constant over time. On 27 May 2023,
while sailing on the vaka Paikea from Rarotonga to Apia, you finished your
watch (your assigned shift) and are ready to take a nap. Before you lie
down, you take note that the canoe has a heading of 310◦ and the swells
are coming from the southwest (Manu Kona) and hitting the canoe at 5◦

above directly left of the canoe.

(a) What is the heading of the swell?

Answer. 225◦

(b) When you wake, you noticed the swells are now hitting the canoe
from 25◦ to the left of your heading. You are aware that the swells
could not have changed this fast and conclude that while you were
asleep, the canoe changed its heading. Assuming the swell was
constant, determine your new heading.

Answer. 250◦

92. After spending six weeks in Samoa, vaka Paikea is making his way back
from Apia to Rarotonga. On July 14, 2023, the canoe is sailing with a
heading of 50◦, and the wind is coming to the canoe from 60◦ to the right
of the heading. What is the heading and house from which the wind is
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coming?
Answer. 110◦; ‘Āina Malanai
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1.3 Unit Circle
In this section, we will introduce the trigonometric functions using the Unit
Circle.

1.3.1 Unit Circle
Definition 1.3.1 Unit Circle. The unit circle is a circle whose radius is
1 and whose center is at the origin of a coordinate plane (or xy-plane). The
equation for the unit circle is

x2 + y2 = 1.

♢
Let t be a real number. Recall from Definition 1.2.19 that the radian

measure of a central angle, t, is defined as the ratio of the arc length s to the
radius r. In other words, t = s

r . In the unit circle, the radius is r = 1, and the
angle in radians is equal to the arc length, t = s. We will let t be in radians.
The circumference of the unit circle is 2πr = 2π · 1 = 2π.

x

y

t

s = t

If t ≥ 0, we can imagine wrapping a line segment around the unit circle,
marking off a distance of t in the counterclockwise direction, and labeling that
endpoint P (x, y), which becomes the terminal point. If t < 0, we would wrap
in the clockwise direction.
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x

y

P (x, y) t

t

If t > 2π or t < −2π, then the length is longer than the circumference of
the unit circle and we will need to travel around the unit circle more than once
before arriving at the point P (x, y). Therefore, we can conclude that regardless
of the value of t, we have a unique point P (x, y) that lies on the unit circle. We
call P (x, y) the point on the unit circle that corresponds to t.

1.3.2 Trigonometric Functions
The x- and y-coordinates for P (x, y) can then be used to define the six trigono-
metric functions of a real number t:

sine cosine tangent cosecant secant cotangent

which are abbreviated as sin, cos, tan, csc, sec, and cot, respectively.

Definition 1.3.2 Definition of Trigonometric Functions. Let t be
any real number and let P (x, y) be the terminal point on the unit circle
corresponding with t. Then

sin t = y cos t = x tan t = y

x
, (x ̸= 0)

csc t = 1
y

, (y ̸= 0) sec t = 1
x

, (x ̸= 0) cot t = x

y
, (y ̸= 0).
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x

y

1

cos t

sin t

P (x, y)

t

t

Notice that tan t and sec t are undefined when x = 0 and csc t and cot t are
undefined when y = 0. ♢

Example 1.3.3 Let t be the angle that corresponds to the point P (
√

3
2 , − 1

2 ).
Find the exact values of the six trigonometric functions corresponding to t:
sin t, cos t, tan t, csc t, sec t, cot t.
Solution. The point P (

√
3

2 , − 1
2 ) gives us x =

√
3

2 and y = − 1
2 . Then we have

sin θ = y = −1
2 , csc θ = 1

y
= 1

− 1
2

= −2,

cos θ = x =
√

3
2 , sec θ = 1

x
= 1

√
3

2

= 2√
3

,

tan θ = y

x
=

− 1
2√
3

2

= − 1√
3

, cot θ = x

y
=

√
3

2
− 1

2
= −

√
3.

□

1.3.3 Trigonometric Functions of an Angle
Definition 1.3.4 Trigonometric Functions of an Angle. If θ is an angle
with radian measure t, then the six trigonometric functions become

sin θ = y cos θ = x tan θ = y

x
, (x ̸= 0)

csc θ = 1
y

, (y ̸= 0) sec θ = 1
x

, (x ̸= 0) cot θ = x

y
, (y ̸= 0).

♢

Example 1.3.5 Find the exact values of the six trigonometric functions for:

(a) θ = 0

Solution. When θ = 0 radians (0◦), the point on the circle is P (1, 0).
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x

y

P(1,0)

Then x = 1 and y = 0 gives us

sin 0 = sin 0◦ = 0, csc 0 = csc 0◦ = undefined,

cos 0 = cos 0◦ = 1, sec 0 = sec 0◦ = 1,

tan 0 = tan 0◦ = 0, cot 0 = cot 0◦ = undefined.

(b) θ = 3π
2

Solution. When θ = 3π
2 radians (270◦), the point on the circle is

P (0, −1).

x

y

P(0,-1)

Then x = 0 and y = −1 gives us

sin 3π

2 = sin 270◦ = −1, csc 3π

2 = csc 270◦ = −1,

cos 3π

2 = cos 270◦ = 0, sec 3π

2 = sec 270◦ = undefined,

tan 3π

2 = tan 270◦ = undefined, cot 3π

2 = cot 270◦ = 0.

(c) θ = 5π

Solution. Since θ = 5π > 2π, our angle is greater than one full rotation
of a circle. We first subtract θ by one rotation, 2π, to get

5π − 2π− = 3π
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Once again, since we have completed more than one full rotation, we can
repeat the previous step:

3π − 2π = π

The values of the six trigonometric functions when θ = 5π are equal to
those when θ = π. Notice that 5π and π are coterminal angles, both
ending at the pointP (−1, 0).

x

y

P(-1,0)

Since x = −1 and y = 0 we have

sin 5π = 0, cos 5π = −1, tan 5π = 0,

csc 5π = undefined, sec 5π = −1, cot 5π = undefined.

□

Example 1.3.6 Finding the Exact Values of the Trigonometric Func-
tions for θ = 45◦. Find the exact values of the six trigonometric functions for
θ = 45◦.
Solution. We begin by drawing a right triangle with a base angle of 45◦ in
the unit circle.

x

y

1

x

y

P (x, y)

45◦

y = x

Since the first quadrant has 90◦, at θ = 45◦, the point P lies on the line
that bisects the first quadrant. This means the point P is on the line y = x.
Since P (x, y) also lies on the unit circle, whose equation is x2 + y2 = 1, we get

x2 + y2 = 1
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x2 + x2 = 1 (since y = x)
2x2 = 1

x2 = 1
2

x = 1√
2

y = 1√
2

(since y = x).

Then

sin 45◦ = 1√
2

, csc 45◦ = 1
1√
2

=
√

2,

cos 45◦ = 1√
2

, sec 45◦ = 1
1√
2

=
√

2,

tan 45◦ =
1√
2

1√
2

= 1, cot 45◦ =
1√
2

1√
2

= 1.

□

Example 1.3.7 Finding the Exact Values of the Trigonometric Func-
tions for θ = 30◦. Find the exact values of the six trigonometric functions for
θ = 30◦.
Solution. First, we will draw a triangle in a circle with an angle of 30◦ and a
second triangle with an angle of −30◦.

x

y

1

1

x

y

y

P (x, y)

30◦

This gives us two 30-60-90 triangles. These two triangles give us one larger
triangle whose angles are all 60◦. Thus we have an equilateral triangle, with
each side of length 1.
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1

1

x

y

y

P (x, y)

30◦

30◦

60◦

60◦

1

1

1 = 2y

P (x, y)

60◦

60◦

60◦

We see that 1 = 2y so y = 1
2 . Then by the Pythagorean Theorem,

x2 + y2 = 12

x2 +
(

1
2

)2
= 1

x2 + 1
4 = 1

x2 = 3
4

x =
√

3
2 ,

giving us the following triangle.

x

y

1

√
3

2

1
2

P (x, y) = P
( √

3
2 , 1

2

)

30◦

60◦

Then

sin 30◦ = 1
2 , csc 30◦ = 1

1
2

= 2,

cos 30◦ =
√

3
2 , sec 30◦ = 1

√
3

2

= 2√
3

,



CHAPTER 1. TRIGONOMETRIC FUNCTIONS 41

tan 30◦ =
1
2√
3

2

= 1√
3

, cot 30◦ =
√

3
2
1
2

=
√

3.

□

Remark 1.3.8 Finding the Exact Values of the Trigonometric Func-
tions for θ = 90◦. Similarly, we can get the following for θ = 60◦.

x

y

1 1

1
2

1
2

√
3

2

P (x, y) = P
(

1
2 ,

√
3

2

)

60◦ 60◦

30◦ 30◦

We now summarize what we know about the six trigonometric functions for
special angles. Note the trigonometric functions for θ = π

2 and θ = π
3 are left

as exercises.
Table 1.3.9 Trigonometric functions for special angles (Undefined
values are abbreviated as “undef”).

θ (deg) θ (rad) sin θ cos θ tan θ csc θ sec θ cot θ

0◦ 0 0 1 0 undef 1 undef

30◦ π

6
1
2

√
3

2
1√
3

2 2√
3

√
3

45◦ π

4
1√
2

1√
2

1
√

2
√

2 1

60◦ π

3

√
3

2
1
2

√
3 2√

3
2 1√

3

90◦ π

2 1 0 undef 1 undef 0

1.3.4 Symmetry on the Unit Circle
If the point P (x, y) lies on the unit circle, the following symmetric points also
lie on the unit circle:

1. Q(−x, y): Symmetry about the y-axis.
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2. R(−x, −y): Symmetry about the origin.

3. S(x, −y): Symmetry about the x-axis.

This symmetry within the unit circle resembles the pattern observed in
the Star Compass. When a star emerges in the eastern sky, it will eventually
descend and set in the corresponding house of the western sky. For instance,
if a star rises above the horizon in the Nālani house of the Ko‘olau quadrant
(northeast), it will journey across the sky and set in the equivalent house within
the Ho‘olua quadrant (northwest). This similarity aligns with the symmetry
between points P (x, y) and Q(−x, y). Additionally, if an ocean swell or wind
originates from the Nālani house in the Malanai quadrant (southeast), it will
pass the wa‘a and exit in the opposite direction toward the Ho‘olua quadrant
(northwest), still within the Nālani house. This mirrors the symmetry between
points S(x, −y) and Q(−x, y).

x

y

P (x, y)Q(−x, y)

R(−x, −y) S(x, −y)

H
ikina

K
om

oh
an

a

Hema

‘Ākau
NālaniNālani

Nālani Nālani

A fourth form of symmetry involves reflecting points across the diagonal
line y = x, where the x- and y-values are equal.

T (y, x): Symmetry about the line y = x. This is accomplished by inter-
changing the x- and y-values.

x

y
P (x, y)

T (y, x)

Notice on the Unit Circle that the radius extending from the center at an
angle of 30◦ to the point T (x, y) =

( √
3

2 , 1
2

)
is symmetric about the line y = x,

in relation to the radius extending from the center at an angle of 60◦ to the
point P (x, y) =

(
1
2 ,

√
3

2

)
.
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x

y

P (x, y) =
(

1
2 ,

√
3

2

)

T (x, y) =
( √

3
2 , 1

2

)

30◦

60◦

Using symmetry about the x-axis, symmetry about the y-axis, and symmetry
about the origin, we can complete the unit circle, as long as we remember
that the x-values in Quadrants II and III are negative while the y-values in
Quadrants III and IV are negative.

x

y

π
4

π
2

3π
4

π

5π
4

3π
2

7π
4

2π

(
1√
2 , 1√

2

)(
− 1√

2 , 1√
2

)

(
− 1√

2 , − 1√
2

) (
1√
2 , − 1√

2

)

(−1, 0) (1, 0)

(0, −1)

(0, 1)

x

y

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

2π

( √
3

2 , 1
2

)

(
1
2 ,

√
3

2

)

(
−

√
3

2 , 1
2

)

(
− 1

2 ,
√

3
2

)

(
−

√
3

2 , − 1
2

)

(
− 1

2 , −
√

3
2

)

( √
3

2 , − 1
2

)

(
1
2 , −

√
3

2

)

(−1, 0) (1, 0)

(0, −1)

(0, 1)

Finally, we tie everything together and look at the entire Unit Circle. At
first glance, it may seem intimidating; however, similar to the Star Compass,
there is a lot of symmetry (x-axis, y-axis, origin, and the line y = x). A helpful
approach is to focus on one quadrant and use symmetry to complete the rest
of the circle.
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x

y

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

0◦, 360◦

45◦135◦

225◦ 315◦

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

( √
3

2 , 1
2

)
(

1√
2 , 1√

2

)
(

1
2 ,

√
3

2

)

(
−

√
3

2 , 1
2

)
(

− 1√
2 , 1√

2

)
(

− 1
2 ,

√
3

2

)

(
−

√
3

2 , − 1
2

)
(

− 1√
2 , − 1√

2

)
(

− 1
2 , −

√
3

2

)

( √
3

2 , − 1
2

)
(

1√
2 , − 1√

2

)
(

1
2 , −

√
3

2

)

(−1, 0) (1, 0)

(0, −1)

(0, 1)

Figure 1.3.10 The Unit Circle for common angles in radians and degrees.

1.3.5 Trigonometric Functions on a Circle with Radius r

Until now, computing the exact values of trigonometric functions of an angle
θ required us to locate the corresponding point P (x, y) on the unit circle.
However, we can use any circle with center at the origin, that is, any circle of
the form x2 + y2 = r2, where r > 0 is the radius. Note that if r = 1, then the
cirlce is the unit circle.
Theorem 1.3.11 For an angle θ in standard position, let P (x, y) be the point
on the terminal side of θ that is also on the circle x2 + y2 = r2. Then

sin θ = y

r
cos θ = x

r
tan θ = y

x
, (x ̸= 0)

csc θ = r

y
, (y ̸= 0) sec θ = r

x
, (x ̸= 0) cot θ = x

y
, (y ̸= 0).

1.3.6 Exercises

Exercise Group. Verify algebraically that the point P is on the unit circle
(x2 + y2 = 1).

1. P
( 3

5 , − 4
5
)

Answer.
( 3

5
)2+(

− 4
5
)2 = 1

2. P
(

−
√

39
8 , − 5

8

)
Answer.

(
−

√
39
8

)2
+(

− 5
8
)2 = 1

3. P
(

−
√

55
8 , 3

8

)
Answer.

(
−

√
55
8

)2
+( 3

8
)2 = 1
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4. P
(

− 2
3 ,

√
5

3

)
Answer.

(
− 2

3
)2+( √

5
3

)2
= 1

5. P
(

3
4 ,

√
7

4

)
Answer.

( 3
4
)2+( √

7
4

)2
= 1

6. P
( √

21
5 , − 2

5

)
Answer.

( √
21
5

)2
+(

− 2
5
)2 = 1

Exercise Group. Let the point P be on the unit circle. Given the quadrant
that P lies in, determine the missing coordinate, a.

7. III; P
(
− 2

3 , a
)

Answer. −
√

5
3

8. IV; P
( 5

8 , a
)

Answer. −
√

39
8

9. III; P
(
a, − 2

5
)

Answer. −
√

21
5

10. II; P
(
a, 4

9
)

Answer. −
√

65
9

Exercise Group. Given an angle θ that corresponds to the point P on the
unit circle, determine the coordinates of the point P (x, y).

11. θ = π
2

Answer. (0, 1)
12. θ = π

Answer. (−1, 0)
13. θ = 5π

3

Answer.
(

1
2 , −

√
3

2

)14. θ = 4π
3

Answer.
(

− 1
2 , −

√
3

2

)
15. θ = − π

4

Answer.
(

1√
2 , − 1√

2

)16. θ = 5π
6

Answer.
(

−
√

3
2 , 1

2

)17. θ = 315◦

Answer.
(

1√
2 , − 1√

2

)18. θ = 720◦

Answer. (1, 0)

19. θ = 60◦

Answer.
(

1
2 ,

√
3

2

)20.
θ = −180◦

Answer. (−1, 0)

21. θ = 210◦

Answer.
(

−
√

3
2 , − 1

2

)22. θ = 120◦

Answer.
(

− 1
2 ,

√
3

2

)

Exercise Group. For each angle θ in Exercises 1.3.6.11–22, find the exact
values of the six trigonometric functions. If any are not defined, say “undefined.”

23. θ = π
2

Answer. sin π
2 =

1; cos π
2 = 0;

tan π
2 is

undefined;
csc π

2 = 1; sec π
2

is undefined;
cot π

2 = 0

24. θ = π

Answer. sin π =
0; cos π = −1;
tan π = 0; csc π
is undefined;
sec π = −1; cot π
is undefined

25. θ = 5π
3

Answer. sin 5π
3 =

−
√

3
2 ; cos 5π

3 = 1
2 ;

tan 5π
3 = −

√
3;

csc 5π
3 = − 2√

3 ;
sec 5π

3 = 2;
cot 5π

3 = − 1√
3

26. θ = 4π
3

Answer. sin 4π
3 =

−
√

3
2 ;

cos 4π
3 = − 1

2 ;
tan 4π

3 =
√

3;
csc 4π

3 = − 2√
3 ;

sec 4π
3 = −2;

cot 4π
3 = 1√

3

27. θ = − π
4

Answer. sin
(
− π

4
)

=
−

√
2

2 ;
cos

(
− π

4
)

=
√

2
2 ;

tan
(
− π

4
)

= −1;
csc

(
− π

4
)

= −
√

2;
sec

(
− π

4
)

=
√

2;
cot

(
− π

4
)

= −1

28. θ = 5π
6

Answer. sin 5π
6 =

1
2 ; cos 5π

6 = −
√

3
2 ;

tan 5π
6 = − 1√

3 ;
csc 5π

6 = 2;
sec 5π

6 = − 2√
3 ;

cot 5π
6 = −

√
3
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29. θ = 315◦

Answer. sin 315◦ =
− 1√

2 ;
cos 315◦ = 1√

2 ;
tan 315◦ = −1;
csc 315◦ = −

√
2;

sec 315◦ =
√

2;
cot 315◦ = −1

30. θ = 720◦

Answer. sin 720◦ =
0; cos 720◦ = 1;
tan 720◦ = 0;
csc 720◦ is
undefined;
sec 720◦ = 1;
cot 720◦ is
undefined

31. θ = 60◦

Answer. sin 60◦ =√
3

2 ; cos 60◦ = 1
2 ;

tan 60◦ =
√

3;
csc 60◦ = 2√

3 ;
sec 60◦ = 2;
cot 60◦ = 1√

3

32. θ = −180◦

Answer. sin(−180◦) =
0; cos(−180◦) =
−1;
tan(−180◦) = 0;
csc(−180◦) is
undefined;
sec(−180◦) =
−1; cot(−180◦)
is undefined

33. θ = 210◦

Answer. sin 210◦ =
− 1

2 ;
cos 210◦ = −

√
3

2 ;
tan 210◦ = 1√

3 ;
csc 210◦ = −2;
sec 210◦ = − 2√

3 ;
cot 210◦ =

√
3

34. θ = 120◦

Answer. sin 120◦ =√
3

2 ;
cos 120◦ = − 1

2 ;
tan 120◦ = −

√
3;

csc 120◦ = 2√
3 ;

sec 120◦ = −2;
cot 120◦ = − 1√

3

Exercise Group. Let θ be the angle that corresponds to the point P .
Exercises 1.3.6.1–6 verified P is on the unit circle. Find the exact values of the
six trigonometric functions of θ.

35. P
( 3

5 , − 4
5
)

Answer. sin θ =
− 4

5 ; cos θ = 3
5 ;

tan θ = − 4
3 ;

csc θ = − 5
4 ;

sec θ = 5
3 ;

cot θ = − 3
4

36. P
(

−
√

39
8 , − 5

8

)
Answer. sin θ =
− 5

8 ;
cos θ = −

√
39
8 ;

tan θ = 5√
39 ;

csc θ = − 8
5 ;

sec θ = − 8√
39 ;

cot θ =
√

39
5

37. P
(

−
√

55
8 , 3

8

)
Answer. sin θ =
3
8 ; cos θ = −

√
55
8 ;

tan θ = − 3√
55 ;

csc θ = 8
3 ;

sec θ = − 8√
55 ;

cot θ = −
√

55
3

38. P
(

− 2
3 ,

√
5

3

)
Answer. sin θ =√

5
3 ; cos θ = − 2

3 ;
tan θ = −

√
5

2 ;
csc θ = 3√

5 ;
sec θ = − 3

2 ;
cot θ = − 2√

5

39. P
(

3
4 ,

√
7

4

)
Answer. sin θ =√

7
4 ; cos θ = 3

4 ;
tan θ =

√
7

3 ;
csc θ = 4√

7 ;
sec θ = 4

3 ;
cot θ = 3√

7

40. P
( √

21
5 , − 2

5

)
Answer. sin θ =
− 2

5 ; cos θ =
√

21
5 ;

tan θ = − 2√
21 ;

csc θ = − 5
2 ;

sec θ = 5√
21 ;

cot θ = −
√

21
2

Exercise Group. Find the exact value of each expression.
41. sin 30◦ + sin 150◦

Answer. 1
42. cos 30◦ + cos 150◦

Answer. 0
43. sin 60◦ + sin 120◦ + sin 240◦ + sin 300◦

Answer. 0
44. cos 60◦ + cos 120◦ + cos 240◦ + cos 300◦

Answer. 0
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45. tan 45◦ + tan 135◦

Answer. 0
46. tan 135◦ + tan 225◦

Answer. 0
47. tan 225◦ + tan 315◦

Answer. 0
48. tan 45◦ + tan 225◦

Answer. 2
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1.4 Right Triangle Trigonometry

start

end

actual course

reference course

deviation
1 House

During a voyage, a navigator utilizes a reference course —a line connecting
the starting point and destination—to monitor their position. When the wa‘a
(canoe) encounters winds that veer it off course, the navigator mentally plots
their position relative to the reference course. To ensure the destination isn’t
missed, navigators must monitor their deviation from the intended course,
involving measurement of the angle of deviation from the reference course (in
units of houses) and determining the distance traveled. This section explores
the calculation of trigonometric functions using right triangles, enabling us to
assess how much the wa‘a has strayed from its intended reference course.

1.4.1 Trigonometric Ratios
Definition 1.4.1 Trigonometric Ratios. Consider a right triangle with θ
as one of its acute angles. The trigonometric ratios are defined as follows:

adjacent

hypoten
use

op
po

sit
e

θ

sin θ = opposite
hypotenuse , cos θ = adjacent

hypotenuse , tan θ = opposite
adjacent ,

csc θ = hypotenuse
opposite , sec θ = hypotenuse

adjacent , cot θ = adjacent
opposite .

A common mnemonic for remembering these relationships is SOHCAHTOA,
formed from the first letters of “S ine is Opposite over Hypotenuse, Cosine is
Adjacent over Hypotenuse, Tangent is Opposite over Adjacent.” ♢

Based on the definition of the six trigonometric functions, we have the
following trigonometric identities.

Definition 1.4.2 Reciprocal Identities.

sin θ = 1
csc θ

, cos θ = 1
sec θ

, tan θ = 1
cot θ

,

csc θ = 1
sin θ

, sec θ = 1
cos θ

, cot θ = 1
tan θ

.

♢
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Definition 1.4.3 Quotient Identities.

tan θ = sin θ

cos θ
, cot θ = cos θ

sin θ
.

♢

Example 1.4.4 Find the exact values of the six trigonometric ratios of the
angle θ in the given triangle.

4

5 3

θ

Solution. By the definition of the trigonometric ratios, we have

sin θ = 3
5 , cos θ = 4

5 , tan θ = 3
4 ,

csc θ = 5
3 , sec θ = 5

4 , cot θ = 4
3 .

□

Example 1.4.5 Find the exact values of the six trigonometric ratios of the
angle θ in the given triangle.

5

2

θ

Solution. Notice that θ is in a different position. Here, the adjacent side is
three and the opposite side is five. If we let h denote the hypotenuse, then we
can use the Pythagorean Theorem to get

h =
√

52 + 22 =
√

29.

Then by the definition of the trigonometric ratios, we have

sin θ = 5√
29

, cos θ = 2√
29

, tan θ = 5
2 ,

csc θ =
√

29
5 , sec θ =

√
29
2 , cot θ = 2

5 .

□
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1.4.2 Special Triangles
The angles 30◦, 45◦, 60◦ ( π

6 , π
4 , π

3 ) give special values for trigonometric functions.
The following figures are used to calculate trigonometric values.

1

1

√
2

45◦

45◦

1

1
2

1
2

1√
3

2

60◦ 60◦

30◦ 30◦

The trigonometric values for the special angles 0◦, 30◦, 45◦, 60◦, 90◦ (
0, π

6 , π
4 , π

3 , π
2

)
are given in Table 1.4.6.

Table 1.4.6 Values of the trigonometric functions in Quadrant I

θ θ sin θ cos θ tan θ

(degrees) (radians)

0◦ 0 0 1 0

30◦ π

6
1
2

√
3

2
1√
3

45◦ π

4
1√
2

1√
2

1

60◦ π

3

√
3

2
1
2

√
3

90◦ π

2 1 0 undefined

1.4.3 Cofunctions
The symmetry between sin θ and cos θ becomes evident when reversing the order
of sine and cosine values from 90◦ to 0◦. This symmetry yields sin 0◦ = cos 90◦,
sin 30◦ = cos 60◦, sin 45◦ = cos 45◦, sin 60◦ = cos 30◦, and sin 90◦ = cos 0◦.

This pattern between sine and cosine is no coincidence; it emerges because
the three angles in a triangle add up to 180◦ or π radians. When considering
a right triangle, the remaining two angles combine to form 90◦ or π

2 radians,
making them complementary angles.
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b

c
a

α

β

Consider the right triangle in the figure above, where angles α and β are
complementary angles. Side a is opposite of angle α, and side b is opposite of
angle β. Notice that we can also describe side b as adjacent to angle α and side
a as adjacent to angle β. Therefore,

sin α = opposite
hypotenuse = a

c
and cos β = adjacent

hypotenuse = a

c
.

Thus we can conclude that

sin α = a

c
= cos β.

Sine and cosine are called cofunctions because of this relationship be-
tween these functions and their complementary angles. We can obtain similar
relationships for all trigonometric functions:

sin α = a

c
= cos β, cos α = b

c
= sin β, tan α = a

b
= cot β,

csc α = c

a
= sec β, sec α = c

b
= csc β, cot α = b

a
= tan β.

Since α and β are complementary angles, α + β = 90◦. Rearranging, we get
β = 90◦ − α. Substituting this into our cofunctions and replacing α with θ, we
get our cofunction identities.

Definition 1.4.7 Cofunction Identities. The cofunction identities in
degrees are

sin θ = cos(90◦ − θ), cos θ = sin(90◦ − θ), tan θ = cot(90◦ − θ),
csc θ = sec(90◦ − θ), sec θ = csc(90◦ − θ), cot θ = tan(90◦ − θ).

The cofunction identities in radians are

sin θ = cos
(π

2 − θ
)

, cos θ = sin
(π

2 − θ
)

, tan θ = cot
(π

2 − θ
)

,

csc θ = sec
(π

2 − θ
)

, sec θ = csc
(π

2 − θ
)

, cot θ = tan
(π

2 − θ
)

.

♢

Example 1.4.8 Cofunction Identities explain the symmetry in Table 1.4.6.

sin 0◦ = cos(90◦ − 0◦) = cos 90◦, sin 30◦ = cos(90◦ − 30◦) = cos 60◦,

sin 45◦ = cos(90◦ − 45◦) = cos 45◦, sin 60◦ = cos(90◦ − 60◦) = cos 30◦,

sin 90◦ = cos(90◦ − 90◦) = cos 0◦.

□
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Remark 1.4.9 Patterns in the Trigonometric Table. To help remember
the values of sine and cosine, we utilize cofunctions and also write them in the
form

√
·/2.

θ θ sin θ cos θ

0 0◦ √
0/2

√
4/2

π/6 30◦ √
1/2

√
3/2

π/4 45◦ √
2/2

√
2/2

π/3 60◦ √
3/2

√
1/2

π/2 90◦ √
4/2

√
0/2

which simplifies to the values in Table 1.4.6.

1.4.4 Using a Calculator
Sometimes we may encounter an angle other than the special angles described
above. In this case, we will have to use a calculator.

First, ensure that the angle is either in degrees or radians, depending on the
problem. Refer to your calculator’s manual for instructions. Most calculators
have dedicated buttons for the sine, cosine, and tangent functions. Depending
on your calculator, you may see the following keys

Function Calculator Key

sine SIN
cosine COS
tangent TAN

To calculate cosecant, secant, and cotangent, we will need to use the identities

csc θ = 1
sin θ

, sec θ = 1
cos θ

, cot θ = 1
tan θ

.

Answers produced by calculators are estimates and we should pay close
attention to see if the question is asking for the exact solution or a decimal
approximation. For example, if we need to calculate sin 45◦ = 1√

2 , the calculator
may give the answer as sin 45◦ ≈ 0.70710678, which is a decimal approximation
since the actual value is an irrational number with infinitely many decimal
places. Unless stated otherwise, answers in the book should be exact, e.g. 1√

2
and not 0.70710678.
Example 1.4.10 Use a calculator to evaluate:
(a) sin 22◦

Solution. Before proceeding, we confirm that our calculator is set to
either degree or radian mode. Additionally, for the sake of simplicity, we
will round our answers to four decimal places.
Input: SIN (22); Output: 0.3746

(b) cos 5◦
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Solution. Input: COS (5); Output: 0.9962

(c) cot 53◦

Solution. Since most calculators do not have a key for cotangent, we
Input: (1/ TAN (53)); Output: 1

1.3270 ≈ 0.7536

(d) cos 5 rad

Solution. Since this problem uses radians, we must change the mode
on our calculator then Input: COS (5); Output: 0.2837.

□

Remark 1.4.11 Observe that cos 5◦ ̸= cos 5 rad. This emphasizes the signifi-
cance of verifying whether the calculator is in degree or radian mode.

1.4.5 Solving Right Triangles

b

c
a

α

β

Consider the following right triangle where side a is opposite angle α, side b is
opposite angle β, and side c is the hypotenuse. Since α and β are complementary
angles, we have

α + β = 90◦.

Additionally, by the Pythagorean Theorem, we have

a2 + b2 = c2.

Definition 1.4.12 To solve a triangle is the process of determining the values
for all three lengths of its sides and the measures of all three angles, based on
provided information about the triangle. ♢

Remark 1.4.13 Solving Right Triangles. In solving a right triangle, the
following relationships are useful:

α + β = 90◦, a2 + b2 = c2.
Example 1.4.14 Solve the right triangle. Round your answer to two decimal
places.
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16

c
a

50◦

β

Solution. Given that this is a right triangle, we already know one angle is
90◦, and we have an additional angle of 50◦ along with an adjacent side length
of 16. To solve this triangle, we need to determine the values of sides a, c, and
β. We begin by finding the measure of angle β. Since 50◦ + β = 90◦ we have

β = 90◦ − 50◦ = 40◦.

Next, we will solve for side a. Using the angle 50◦, where the adjacent side
is 16 and side a is the side opposite to the angle, we can apply the tangent
function, which relates the opposite and adjacent sides:

tan 50◦ = a

16 .

Multiplying both sides by 16 we get

a = 16 · tan 50◦ ≈ 19.07.

Using the Pythagorean Theorem, we get

c2 = 162 + 19.072 ≈ 619.66.

Thus
c ≈

√
619.66 ≈ 24.89.

□

1.4.6 Solving Applied Problems
Example 1.4.15 Deviation. We are now ready to calculate the deviation
example proposed at the start of this section. In an average day of sailing,
a wa‘a sails 120 nautical miles (NM). If Hikianalia is supposed to sail in the
direction of Hikina (East), but currents have deviated her course by one house
so she actually sailed in the house Lā, how far off the course has Hikianalia
deviated?
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start

end

actual course

reference course

deviation
1 House

Solution. From the Star Compass (Figure 1.1.4), the house Lā is one house
(11.25◦) from Hikina. If we let y denote the distance deviated from the reference
course, our right triangle becomes:

start

end

120 NM
y

11.25◦

Since we know the hypotenuse of the triangle and want to find the side
opposite of the angle, we will use the sine function:

sin 11.25◦ = opposite
hypotenuse = y

120 NM;

multiplying both sides by 120, we get

y = 120 · sin 11.25◦ NM ≈ 23.4 NM.

So Hikianalia has deviated 23.4 nautical miles north from the reference
course. □

Example 1.4.16 Solar panels. Solar panels harness the sun’s energy to
generate electricity, and for optimal energy output, they should be oriented
perpendicularly to the sun’s light. The sun’s angle of elevation varies based on
latitude, and in Hawai‘i, for instance, south-facing solar panels are recommended
to have a pitch of 21◦ to align with the sun’s rays. When installing a solar panel,
determining its pitch might pose challenges. Instead of measuring the angle
directly, an alternative approach involves measuring the height of the panel’s
top. What height should a south-facing solar panel, measuring 65 inches in
length, be installed at to achieve the desired angle of 21◦? Round your answer
to the nearest tenth of an inch.

Solar PanelH
ei

gh
t

Sun’s rays

Angle of
elevation of
Sun

Pitch angle

Solution. We begin by drawing the triangle.
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65 in

H
ei

gh
t

21◦

Since we know the desired angle of pitch of the solar panel and the length
of the panel, we can set up the following equation

sin 21◦ = opposite
hypotenuse = height

65 in ;

height =65 in · sin 21◦ ≈ 23.3 in.

Thus, when installing a solar panel in Hawai‘i, the top of the solar panel
should be positioned 23.3 inches above the bottom to optimize energy output.

□

1.4.7 Exercises

Exercise Group. Find the exact values of the six trigonometric functions of
the angle θ in each triangle.

1.

3

5 4

θ

Answer. sin θ = 4
5 ,

cos θ = 3
5 , tan θ = 4

3 ,
csc θ = 5

4 , sec θ = 5
3 , cot θ = 3

4

2.

5

√
74

7

θ

Answer. sin θ = 5√
74 ,

cos θ = 7√
74 , tan θ = 5

7 ,
csc θ =

√
74
5 , sec θ =

√
74
7 ,

cot θ = 7
5
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3.

4

6

θ

Answer. sin θ = 3√
13 ,

cos θ = 2√
13 , tan θ = 3

2 ,
csc θ =

√
13
3 , sec θ =

√
13
2 ,

cot θ = 2
3

4.

1312

θ

Answer. sin θ = 5
13 ,

cos θ = 12
13 , tan θ = 5

12 ,
csc θ = 13

5 , sec θ = 13
12 ,

cot θ = 12
5

5.

7

14

θ

Answer. sin θ = 2√
5 ,

cos θ = 1√
5 , tan θ = 2,

csc θ =
√

5
2 , sec θ =

√
5,

cot θ = 1
2

6.

4

4

θ

Answer. sin θ = 1√
2 ,

cos θ = 1√
2 , tan θ = 1,

csc θ =
√

2, sec θ =
√

2,
cot θ = 1
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7.

2

√
10

θ

Answer. sin θ =
√

3√
5 ,

cos θ = 2√
10 , tan θ =

√
6

2 ,
csc θ =

√
10√
6 , sec θ =

√
10
2 ,

cot θ = 2√
6

8.

2

3

θ

Answer. sin θ = 2√
13 ,

cos θ = 3√
13 , tan θ = 2

3 ,
csc θ =

√
13
2 , sec θ =

√
13
3 ,

cot θ = 3
2

Exercise Group. For each of the following problems, calculate:

(a) cos α and sin β;

(b) tan α and cot β;

(c) csc α and sec β.
9.

5

3
β

α

Answer.

(a) cos α = sin β = 5√
34 ;

(b) tan α = cot β = 3
5 ;

(c) csc α = sec β =
√

34
3 .

10.

7

8

α

β

Answer.

(a) cos α = sin β = 7
8 ;

(b) tan α = cot β =
√

15
7 ;

(c) csc α = sec β = 8√
15 .

Exercise Group. Use the Cofunction Identities to determine the value of θ.
11. sin 28◦ = cos θ

Answer. θ =
62◦

12. cos 74◦ = sin θ

Answer. θ =
16◦

13. tan 52◦ = cot θ

Answer. θ =
38◦

14. sec 87◦ = csc θ

Answer. θ =
3◦

15. sin 3π
8 = cos θ

Answer. θ =
π
8

16. cot 2π
5 = tan θ

Answer. θ =
π
10

Exercise Group. In Example 1.4.15, we determined that when a wa‘a sails
for one day (120 nautical miles) and deviates from its course by 1 house, the
resulting deviation from the reference course is 23.4 NM. Now, calculate the
deviations (x) for the remaining 7 angles. Round your answer to the nearest
tenth of a nautical mile. Remember that one house corresponds to 11.25◦.
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x8

7 houses

6 houses

5 houses

4 houses

3 houses

2 houses

1 house

R
ef

er
en

ce
C

ou
rs

e,
12

0
N

M

8 houses

x7

x6

x5

x4

x3

x2

x1

17. 2 houses (11.25◦ × 2 = 22.5◦);
x2

Answer. x2 = 45.9 NM

18. 3 houses
(11.25◦ × 3 = 33.75◦); x3

Answer. x3 = 66.7 NM
19. 4 houses (11.25◦ × 4 = 45◦);

x4

Answer. x4 = 84.9 NM

20. 5 houses
(11.25◦ × 5 = 56.25◦); x5

Answer. x5 = 99.8 NM
21. 6 houses (11.25◦ × 6 = 67.5◦);

x6

Answer. x6 = 110.9 NM

22. 7 houses
(11.25◦ × 7 = 78.75◦); x7

Answer. x7 = 117.7 NM
23. 8 houses (11.25◦ × 8 = 90◦);

x8

Answer. x8 = 120 NM

Exercise Group. In Exercise 1.4.7.17–23 we determined the deviation of
a wa‘a following a day of sailing (120 nautical miles). Your task now is to
calculate the distance the wa‘a has progressed along the reference course (north)
for each deviation, denoted as y. Round your answer to the nearest tenth of a
nautical mile and remember that one house corresponds to 11.25◦.
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120 NM

7 house

6 houses

5 houses

4 houses

3 houses

2 houses
1 house

R
ef

er
en

ce
C

ou
rs

e,
12

0
N

M

y7

y6

y5

y4

y3

y2

y1

24. 1 house (11.25◦ × 1 = 11.25◦);
y1

Answer. y1 = 117.7 NM

25. 2 houses (11.25◦ × 2 = 22.5◦);
y2

Answer. y2 = 110.9 NM
26. 3 houses

(11.25◦ × 3 = 33.75◦); y3

Answer. y3 = 99.8 NM

27. 4 houses (11.25◦ × 4 = 45◦);
y4

Answer. y4 = 84.9 NM
28. 5 houses

(11.25◦ × 5 = 56.25◦); y5

Answer. y5 = 66.7 NM

29. 6 houses (11.25◦ × 6 = 67.5◦);
y6

Answer. y6 = 45.9 NM
30. 7 houses

(11.25◦ × 7 = 78.75◦); y7

Answer. y7 = 23.4 NM

Exercise Group. One way to determine our bearing on a canoe is by
observing and comparing the positions of celestial and other markers relative
to our canoe. To facilitate this, we can mark the locations of the Star Compass
on the opposite railings from the navigator’s seat in the back corner of the
canoe. However, since the Star Compass is circular and the canoe is rectangular,
accurately placing the markings can be challenging.
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y1

y2

y3

y4

y5

y6

x7x8

When the navigator occupies the port stern (back left) corner of the deck,
markers indicating the boundaries between houses can be placed on the corre-
sponding railings on the bow (front) and starboard (right) sides of the canoe.
For each value of θ, calculate the distance along the starboard railing (y) or
bow railing (x) for a canoe with dimensions l = 50 ft and w = 20 ft. Round
your answers to three decimal places.

31. θ = 5.625◦; y1

Answer. y1 = 1.970 ft
32. θ = 16.875◦; y2

Answer. y2 = 6.067 ft
33. θ = 28.125◦; y3

Answer. y3 = 10.690 ft
34. θ = 39.375◦; y4

Answer. y4 = 16.414 ft
35. θ = 50.625◦; y5

Answer. y5 = 24.370 ft
36. θ = 61.875◦; y6

Answer. y6 = 37.417 ft
37. θ = 73.125◦; x7

Answer. x7 = 15.167 ft
38. θ = 84.375◦; x8

Answer. x8 = 4.925 ft

Exercise Group. Use the right triangle (not drawn to scale) provided below
to solve for the given information. Round your solutions to two decimal places.
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b

c
a

α

β

39. a = 5, β = 35◦. Find b, c,
and α

Answer. b = 3.50, c = 6.10,
α = 55◦

40. b = 12, β = 23◦. Find a, c,
and α

Answer. a = 28.27,
c = 30.71, α = 67◦

41. b = 7, α = 75◦. Find a, c,
and β

Answer. a = 26.12,
c = 27.05, β = 15◦

42. c = 4, β = 50◦. Find a, b,
and α

Answer. a = 2.57, b = 3.06,
α = 40◦

43. c = 10, α = 18◦. Find a, b,
and β

Answer. a = 3.09, b = 9.51,
β = 72◦

44. a = 6, α = 38◦. Find b, c,
and β

Answer. b = 7.68, c = 9.75,
β = 52◦

45. A wa‘a sails in the direction of the house Nālani Ho‘olua for one day,
covering 120 nautical miles. How many nautical miles has the wa‘a traveled
north? How many miles has the wa‘a traveled west? To calculate the angle
θ, refer to the Star Compass (Figure 1.1.4) to determine the number of
houses, and use the fact that one house is 11.25◦.

120 NM

west

north

θ

Answer. 66.7 NM west; 99.8 NM north
46. Movement of Sand. The movement of sand on a beach is a dynamic

process influenced by various factors, such as waves. When waves approach
the shore at an angle, they lead to the shifting of sand. During the swash
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phase, as the wave crashes onto the shore, water and sediment move onto
the beach following the wave’s angle. Subsequently, gravity propels the
water and sediment back into the ocean, perpendicular to the shoreline,
in a process known as backwash. This interplay of swash and backwash
creates a zig-zag pattern called longshore drift.

Certain beaches undergo seasonal changes in wave direction. Some
experience waves from one direction in one season and from another
direction in the next, while those receiving waves predominantly from a
single direction might accumulate sand in specific areas.

Calculate how far along the shore a single grain of sand moves after
a wave breaks at a 60◦ angle and travels onto the shore for 10 ft before
receding back into the ocean.

Waves

10
ft

swash

xmovement

backw
ash

60◦

Answer. 5ft

Exercise Group. Between 2013 and 2017, Hōkūle‘a completed a global
circumnavigation with a mission mālama honua - “care for our Earth” and to
foster a sense of ‘ohana (“family”) for all people and places. This remarkable
voyage spanned 40,000 nautical miles and made stops at over 150 ports across
18 nations.

Throughout this voyage, Earth’s rotation occurs around an axis that extends
from the North Pole to the South Pole. The rotation imparts an angular speed
and linear velocity to every point on Earth. Assuming Earth completes one
rotation within 24 hours and treating Earth as a perfect sphere with a radius
of R = 4, 000 miles, we can calculate the following parameters for each of the
Mālama Honua Voyage’s ports, given their latitudes (ϕ).

(a) Calculate r, the distance from the port to Earth’s axis of rotation (in
miles, rounded to one decimal place).

(b) Calculate ω, the angular velocity (in radians per hour, rounded to four
decimal places).

(c) Calculate v, the linear speed (in miles per hour, rounded to the nearest
whole number).
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Earth’s Axis

Equator
R

R

r

ϕ

ϕ
Port City

47. Hilo, Hawai‘i (19.7216◦ N)
Answer.

(a) r = 3, 765.4 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 986 mi/hr

48. Papeete, Tahiti (17.5325◦ S)
Answer.

(a) r = 3, 814.2 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 999 mi/hr
49. Apia, Samoa (13.8507◦ S)

Answer.

(a) r = 3, 883.7 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 017 mi/hr

50. Waitangi, Aotearoa (35.2683◦

S)
Answer.

(a) r = 3, 265.8 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 855 mi/hr
51. Sydney, Australia (33.8688◦

S)
Answer.

(a) r = 3, 321.3 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 870 mi/hr

52. Bali, Indonesia ( 8.4095◦ S)
Answer.

(a) r = 3, 957.0 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 036 mi/hr

53. Port Louis, Mauritius
(20.1609◦ S)
Answer.

(a) r = 3, 754.9 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 983 mi/hr

54. Cape Town, South Africa
(33.9249◦ S)
Answer.

(a) r = 3, 319.1 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 869 mi/hr
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55. Natal, Brazil (5.7842◦ S)
Answer.

(a) r = 3, 979.6 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 042 mi/hr

56. Necker, British Virgin Islands
(18.5268◦ N)
Answer.

(a) r = 3, 792.7 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 993 mi/hr
57. Yarmouth, Nova Scotia

(43.8379◦ N)
Answer.

(a) r = 2, 885.2 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 755 mi/hr

58. Balboa, Panama (8.9614◦N)
Answer.

(a) r = 3, 951.2 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 034 mi/hr

59. Galapagos Islands (0.9538◦ S)
Answer.

(a) r = 3, 999.5 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 047 mi/hr

60. Rapa Nui (27.1127◦ S)
Answer.

(a) r = 3, 560.5 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 932 mi/hr
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1.5 Trigonometric Functions of Any Angle
Now that we have been introduced to the six trigonometric functions for special
angles in the first quadrant, we can explore their properties across all quadrants.

1.5.1 Determine the Signs of the Trigonometric Functions
Based on the Quadrant

Let P (x, y) be a point on the circle. The signs of the six trigonometric functions
vary depending on the quadrant in which P (x, y) lies in.

x

y

r

P (x, y)

θy

x

Example 1.5.1 Let P (x, y) be in Quadrant II. Determine the sign for each of
the six trigonometric functions.
Solution. Since P (x, y) is in Quadrant II, x < 0 and y > 0. Note that r > 0.
Then we have

sin θ = y

r
= (+)

(+) = (+), cos θ = x

r
= (−)

(+) = (−), tan θ = y

x
= (+)

(−) = (−),

csc θ = r

y
= (+)

(+) = (+), sec θ = r

x
= (+)

(−) = (−), cot θ = x

y
= (−)

(+) = (−).

□
We can check the remaining quadrants using a similar approach. Table 1.5.2

and Figure 1.5.3 provide a list of the signs of the six trigonometric functions
for each quadrant.
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Table 1.5.2 Signs of the trigonometric functions.

Quadrant Positive Functions Negative Functions

I all none
II sinθ, cscθ cosθ, secθ, tanθ, cotθ
III tanθ, cotθ sinθ, cscθ, cosθ, secθ

IV cosθ, secθ sinθ, cscθ, tanθ, cotθ

x

y

++

- -

sin θ, csc θ

x

y

+-

+ -

tan θ, cot θ

x

y

+-

- +

cos θ, sec θ

Figure 1.5.3 Signs of trigonometric functions.

Example 1.5.4 If sin θ < 0 and cos θ > 0, what quadrant does θ lie in?
Solution. Since sin θ < 0, then θ is either in Quadrant III or IV. However,
we also have cos θ > 0 which means that θ is either in Quadrant I or IV. Thus
the only quadrant that satisfies both conditions is Quadrant IV. □

Mnemonic devices for remembering the quadrants in which the trigonometric
functions are positive are

• “A Smart T rig C lass”

• “All Students Take Calculus”

which correspond to “All S in Tan Cos.”

x

y

AllSin
(Csc)

Tan
(Cot)

Cos
(Sec)

Example 1.5.5 Let sin θ = − 12
13 and cos θ = − 5

13 . Compute the exact values
of the remaining trigonometric functions of θ using identities.
Solution. Since sin θ < 0 and cos θ < 0, we refer to Table 1.5.2 and see that
θ is in Quadrant III. From Table 1.5.2 we know tan θ > 0, csc θ < 0, sec θ < 0,
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cot θ > 0. From the Quotient Identity (Definition 1.4.3), we have

tan θ = sin θ

cos θ
=

12
13
5

13
= 12

5 .

Next, using the Reciprocal Identities (Definition 1.4.2), we get

csc θ = 1
sin θ

= 1
− 12

13
= −13

12 ,

sec θ = 1
cos θ

= 1
− 5

13
= −13

5 ,

cot θ = 1
tan θ

= 1
12
5

= 5
12 .

□

1.5.2 Reference Angles
Now that we can determine the signs of trigonometric functions, we will
demonstrate how the value of any trigonometric function at any angle can be
found from its value in Quadrant I (between 0◦ and 90◦ or 0 and π

2 ).

Definition 1.5.6 Let t be a real number. A reference angle, t′, is the acute
angle (< 90◦) formed by the terminal side of angle t and the x-axis. In other
words, it is the shortest arc length along the unit circle measured between the
terminal side and the x-axis. Angles in Quadrant I are their own reference
angles. ♢

Remark 1.5.7 Calculating the reference angle. To calculate the reference
angle t′ for a given angle t:

• In radians, if t > 2π or if t < 0, add or subtract multiples of 2π to obtain
a coterminal angle between 0 and 2π. Then, find the reference angle.

• In degrees, if t > 360◦ or t < 0◦, add or subtract multiples of 360◦ to
obtain a coterminal angle between 0◦ and 360◦. Then, find the reference
angle.

Quadrant
I:

t′ = t

x

y

t = t′

Quadrant
II:

t′ = π − t

t′ = 180◦ − t
x

y

tt′

Quadrant
III:

t′ = t − π

t′ = t − 180◦
x

y

t

t′

Quadrant
IV:

t′ = 2π − t

t′ = 360◦ − t
x

y

t

t′
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Example 1.5.8 Find the reference angle for each value of t.

(a) t = π
3

x

y

π
3

Solution. The angle t = π
3 is in the first quadrant and so it is its own

reference angle: t = t′ = π
3 .

(b) t = 3π
4

x

y

3π
4

t′

Solution. From the figure, we see that the shortest arc length to the
x-axis is in the direction of π. We see that t′ + 3π

4 = π so t′ = π − 3π
4 = π

4 .

(c) t = − 3π
4

x

y

− 3π
4

t′

Solution 1. Since t < 0, we can add 2π to get − 3π
4 + 2π = 5π

4 . From
the formula, we get t′ = 5π

4 − π = π
4 .
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Solution 2. Since − 3π
4 spans only two quadrants counterclockwise, we

can treat it similarly to an angle in Quadrant II. By the previous problem,
t′ + 3π

4 = π so t′ = π − 3π
4 = π

4 .

(d) t = 240◦

x

y

240◦

t′

Solution. From the figure we see that the shortest arc length to the x-
axis is towards 180◦. We observe that 240◦−t′ = 180◦ so t′ = 240◦−180◦ =
60◦.

(e) t = 11π
6

x

y

11π
6

t′

Solution. From the figure, we see that the shortest arc length to the
x-axis is towards 2π. We observe that t′ + 11π

6 = 2π so t′ = 2π − 11π
6 = π

6 .

(f) t = 2π
3

x

y

2π
3

t′
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Solution. From the figure, we see that the shortest arc length to the
x-axis is towards π. We observe that t′ + 2π

3 = π so t′ = π − 2π
3 = π

3 .

□

Remark 1.5.9 Calculate an angle in standard position given its
quadrant and reference angle. We calculate an angle in standard position,
t, given the quadrant that t lies in and the reference angle t′.

Quadrant
I:

t = t′

x

y

t = t′

Quadrant
II:

t = π − t′

t = 180◦ − t′
x

y

t
t′

Quadrant
III:

t = t′ − π

t = t′ − 180◦
x

y

t

t′

Quadrant
IV:

t = 2π − t′

t = 360◦ − t′
x

y

t

t′

For radians only: If the reference angle (in radians) is of the form t′ = aπ
b ,

then the associated angle in standard position, t, can be calculated by:

x

y

t = t′ = aπ
bt = (b−a)π

b

t = (b+a)π
b t = (2b−a)π

b

Example 1.5.10 Calculate an angle given its reference angle and
quadrant. Given a reference angle, t, compute the associated angle in standard
position for Quadrants II, III, and IV.
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(a) t′ = π
6

x

y

π
6

(i) Quadrant II
Solution 1. In Quadrant II, the associated angle is t = π − π

6 =
6π
6 − π

6 = 5π
6 .

x

y

5π
6π

6

Solution 2. Since t′ = π
6 = 1π

6 , then t′ = (6−1)π
6 = 5π

6 .
(ii) Quadrant III

Solution 1. In Quadrant III, the associated angle is t = π + π
6 =

6π
6 + π

6 = 7π
6 .

x

y

7π
6

π
6

Solution 2. t′ = (6+1)π
6 = 7π

6 .
(iii) Quadrant IV

Solution 1. In Quadrant IV, the associated angle is t = 2π − π
6 =

12π
6 − π

6 = 11π
6 .
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x

y

11π
6

π
6

Solution 2. t′ = (2·6−1)π
6 = 11π

6 .

(b) t′ = 45◦

x

y

45◦

(i) Quadrant II
Solution. In Quadrant II, the associated angle is t = 180◦ − 45◦ =
135◦.

x

y

135◦

45◦

(ii) Quadrant III
Solution. In Quadrant III, the associated angle is t = 180◦ +45◦ =
225◦.
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x

y

225◦

45◦

(iii) Quadrant IV
Solution. In Quadrant IV, the associated angle is t = 360◦ −45◦ =
315◦.

x

y

315◦

45◦

□

1.5.3 Evaluating Trigonometric Functions Using Reference
Angles

To evaluate trigonometric functions in any quadrant using reference angles, we
begin with an angle, θ, that lies in Quadrant II. When evaluating sin θ and cos θ,
we begin by plotting θ in standard position and then proceed to determine and
draw its corresponding reference angle, θ′.
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x

y

P
r θ

θ′

By definition we know that

sin θ = y

r
; cos θ = x

r
.

Next, we draw the reference angle, θ′, in standard position.

x

y

P ′(x′, y′)P (x, y)

A

r r

x x′

y′y

θ′
θ

We now have
sin θ′ = y′

r
; cos θ′ = x′

r
.

Notice that the y-coordinates for P and P ′ share the same value, thus y = y′
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and we get
sin θ = sin θ′.

Similarly, we can see that the x-coordinates of P and P ′ have opposite
values, thus x = −x′ and

cos θ = − cos θ′.

You may have noticed that we have two similar triangles, differing only
in their x-coordinates have opposite values. Consequently, the values of each
trigonometric function for the two triangles will match, except for a potential
difference in signs. The sign of each function can be deduced by referring to
Table 1.5.2. This approach is applicable across all quadrants. To sum up, we
now outline the steps for utilizing reference angles to evaluate trigonometric
functions.
Remark 1.5.11 Steps for Evaluating Trigonometric Functions Using
Reference Angles. The values of a trigonometric function for a specific
angle are equivalent to the values of the same trigonometric function for the
reference angle, with a potential difference in sign. To compute the value of a
trigonometric function for any angle, use the following steps

1. Draw the angle in standard position.

2. Determine the reference angle associated with the angle.

3. Evaluate the trigonometric function at the reference angle.

4. Use Table 1.5.2 and the quadrant of the original angle to determine the
appropriate sign for the function.

Example 1.5.12 Use the reference angle associated with the given angle to
find the exact value of:

(a) cos 210◦

Solution. We will use the steps for evaluating trigonometric functions
using reference angles.

(a) First we draw the angle θ = 210◦.

x

y

P
r

θ = 210◦

θ′
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(b) The reference angle is

θ′ = 210◦ − 180◦ = 30◦.

(c) cos 30◦ =
√

3
2 .

(d) Since 210◦ lies in Quadrant III, we know that cos θ < 0, so

cos 210◦ = −
√

3
2 .

(b) tan 7π
4

Solution. We will use the steps for evaluating trigonometric functions
using reference angles.

(a) First we draw the angle θ = 7π
4 .

x

y

P

r

θ = 7π
4

θ′

(b) The reference angle is

2π − 7π

4 = 8π

4 − 7π

4 = π

4 .

(c) tan π
4 = 1.

(d) Since 7π
4 lies in Quadrant IV, we know that tan θ < 0, so

tan 7π

4 = −1.

□

Example 1.5.13 Calculate sin θ and cos θ if θ = 20π
3 .

Solution.

1. First we draw the angle θ = 20π
3 .
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x

y

P
θ

θ′

Figure 1.5.14 The angle θ = 20π
3 makes three rotations before ending in

Quadrant II.

2. To obtain the reference angle, we first subtract multiples of 2π from θ to
obtain a coterminal angle between 0 and 2π:

20π

3 − 2π =20π

3 − 6π

3 = 14π

3 ,

20π

3 − 4π =20π

3 − 12π

3 = 8π

3 ,

20π

3 − 6π =20π

3 − 18π

3 = 2π

3 .

From Example 1.5.8, the reference angle for 2π
3 is θ′ = π

3 .

3. sin π
3 =

√
3

2 and cos π
3 = 1

2 .

4. Since 20π
3 lies in Quadrant II, we know that sin θ > 0 and cos θ < 0, so

sin 20π

3 =
√

3
2 ; cos 20π

3 = −1
2 .

□

1.5.4 Periodic Functions
In Figure 1.5.14 of Example 1.5.13, point P corresponds to the angle 20π

3 . To
determine the reference angle, we subtracted multiples of 2π. Each iteration of
2π retraces the unit circle back to the point P , resulting in a coterminal angle.
Therefore

sin 2π

3 = sin 8π

3 = sin 14π

3 = sin 20π

3 .

Rewriting the angles we get

sin
(

2π

3 + 0 · 2π

)
= sin

(
2π

3 + 1 · 2π

)
= sin

(
2π

3 + 2 · 2π

)
= sin

(
2π

3 + 3 · 2π

)
.
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Similarly,

cos
(

2π

3 + 0 · 2π

)
= cos

(
2π

3 + 1 · 2π

)
= cos

(
2π

3 + 2 · 2π

)
= cos

(
2π

3 + 3 · 2π

)
.

In general, consider an angle θ measured in radians and its corresponding
point P on the unit circle. Adding or subtracting integer multiples of 2π to θ
will lead to the same point P on the unit circle. Thus, the values of sine and
cosine for all angles corresponding to point P are equivalent. This leads us to
the following periodic properties.

Definition 1.5.15 Periodic Properties.

sin(θ + 2πk) = sin θ cos(θ + 2πk) = cos θ

where k is any integer. ♢
Functions such as these that repeat their values in regular cycles are called

periodic functions.

Definition 1.5.16 A function f is called periodic if there exists a positive
number p such that

f(θ + p) = f(θ)

for every θ. The smallest number p is called the period of f . ♢
Sine, cosine, cosecant, and secant repeat their values with a period of 2π

while tangent and cotangent have a period of π.

Definition 1.5.17 Periodic Properties.

sin(θ + 2π) = sin θ, cos(θ + 2π) = cos θ, tan(θ + π) = tan θ,

csc(θ + 2π) = csc θ, sec(θ + 2π) = sec θ, cot(θ + π) = cot θ.

♢

1.5.5 Trigonometric Table
The Trigonometric Identities and reference angles give us the values of trigono-
metric functions in Table 1.5.18.
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Table 1.5.18 Values of the six trigonometric functions for common
angles (Undefined values are abbreviated as “undef”).

θ (deg) θ (rad) sin θ cos θ tan θ csc θ sec θ cot θ

0◦ 0 0 1 0 undef 1 undef

30◦ π

6
1
2

√
3

2
1√
3

2 2√
3

√
3

45◦ π

4
1√
2

1√
2

1
√

2
√

2 1

60◦ π

3

√
3

2
1
2

√
3 2√

3
2 1√

3

90◦ π

2 1 0 undef 1 undef 0

120◦ 2π

3

√
3

2 −1
2 −

√
3 2√

3
−2 − 1√

3

135◦ 3π

4
1√
2

− 1√
2

−1
√

2 −
√

2 −1

150◦ 5π

6
1
2 −

√
3

2 − 1√
3

2 − 2√
3

−
√

3

180◦ π 0 −1 0 undef −1 undef

210◦ 7π

6 −1
2 −

√
3

2
1√
3

−2 − 2√
3

√
3

225◦ 5π

4 − 1√
2

− 1√
2

1 −
√

2 −
√

2 1

240◦ 4π

3 −
√

3
2 −1

2
√

3 − 2√
3

−2 1√
3

270◦ 3π

2 −1 0 undef −1 undef 0

300◦ 5π

3 −
√

3
2

1
2 −

√
3 − 2√

3
2 − 1√

3

315◦ 7π

4 − 1√
2

1√
2

−1 −
√

2
√

2 −1

330◦ 11π

6 −1
2

√
3

2 − 1√
3

−2 2√
3

−
√

3
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Remark 1.5.19 Table Made Easy. Table 1.5.18 may seem intimidating
but if we recognize the symmetry about 90◦, 180◦, and 270◦, we will only need
to focus on the values for the first quadrant (Table 1.4.6). In fact, we need
only produce the values of sine in Quadrant I. Use the Cofunction Identities
(Definition 1.4.7) to find the values of cosine. Next, apply the trigonometric
identity to find tan θ = sin θ/ cos θ. Finally, use the the Reciprocal Identities
(Definition 1.4.2) to produce csc θ, sec θ, and cot θ.

1.5.6 Pythagorean Identities
Definition 1.5.20 Pythagorean Identities.

1. sin2 θ + cos2 θ = 1

2. 1 + tan2 θ = sec2 θ

3. 1 + cot2 θ = csc2 θ

♢
Proof. We will use the Pythagorean Theorem to prove the reciprocal identities.

x

y

r

x

y

P (x, y)

θ

Let P (x, y) be a point on the circle with radius r. The equation of the circle is

x2 + y2 = r2.

By definition x
r = cos θ and y

r = sin θ. Thus we have

sin2 θ + cos2 θ =
(y

r

)2
+

(x

r

)2
= x2 + y2

r2 = r2

r2 = 1

which is our first Pythagorean Identity. The proofs of the remaining identities
are left as exercises. ■

Example 1.5.21 Let θ be an angle in Quadrant IV and let cos θ = 3
5 . Calculate

the exact values of sin θ and tan θ.
Solution. Substituting our value of cos θ into the Pythagorean identity, we
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obtain:

sin2 θ + cos2 θ = 1

sin2 θ +
(

3
5

)2
= 1

sin2 θ + 9
25 = 1

sin2 θ = 1 − 9
25

sin2 θ = 16
25 .

Taking the square root of both sides,

sin θ = ±
√

16
25 = ±4

5 .

Since θ is in Quadrant II, we have sin θ < 0. Thus we choose the negative
answer to get

sin θ = −4
5 .

Next we use the Quotient Identity to get

tan θ = sin θ

cos θ
=

− 4
5

3
5

= −4
5 · 5

3 = −4
3 .

□

1.5.7 Even and Odd Trigonometric Functions
Recall that a function f is even if f(−x) = f(x) for all values of x, and a
function is odd if f(−x) = −f(x) for all values of x. With this understanding,
we can now classify trigonometric functions as either even or odd.

Definition 1.5.22 Even and Odd Trigonometric Properties. The
cosine and secant functions are even.

cos(−θ) = cos θ, sec(−θ) = sec θ.

The sine, cosecant, tangent, and cotangent functions are odd.

sin(−θ) = − sin θ, csc(−θ) = − csc(θ),
tan(−θ) = − tan θ, cot(−θ) = − cot(θ).

♢
Proof. Let P be a point on the unit circle corresponding to the angle θ with
coordinates (x, y) and Q be the point corresponding to the angle −θ with
coordinates (x, −y).
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x

y

0 1

P = (x, y)

Q = (x, −y)

−θ

θ

Using the Definition 1.3.4 for the six trigonometric functions we have

sin θ = y, sin(−θ) = −y, cos θ = x, cos(−θ) = x.

So

sin(−θ) = −y = − sin θ, cos(−θ) = x = cos θ.

Thus we conclude that sine is an odd function and cosine is an even func-
tion. Next, using the Quotient (Definition 1.4.3) and Reciprocal Identities
(Definition 1.4.2) we get

tan(−θ) = sin(−θ)
cos(−θ) = − sin θ

cos θ
= − tan θ,

cot(−θ) = 1
tan(−θ) = 1

− tan θ
= − cot θ,

csc(−θ) = 1
sin(−θ) = 1

− sin θ
= − csc θ,

sec(−θ) = 1
cos(−θ) = 1

− cos θ
= sec θ.

Thus tangent, cotangent, cosecant are odd functions and secant is an even
function. ■

Example 1.5.23 Use the even-odd properties of trigonometric functions to
determine the exact value of:

(a) csc(−30◦)

Solution. Since cosecant is an odd function, the cosecant of a negative
angle has the opposite sign of the cosecant of the positive angle. Thus,
csc(−30◦) = − csc 30◦ = −2.

(b) cos(−θ) if cos θ = 0.4

Solution. Cosine is an even function so cos(−θ) = cos θ = 0.4.
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□

1.5.8 Exercises

Exercise Group. Determine the quadrant containing θ given the following:
1. cot θ < 0 and cos θ < 0

Answer. QII
2. csc θ > 0 and tan θ > 0

Answer. QI
3. cos θ > 0 and sin θ < 0

Answer. QIV
4. sec θ > 0 and tan θ > 0

Answer. QI
5. tan θ < 0 and csc θ > 0

Answer. QII
6. cot θ > 0 and sin θ < 0

Answer. QIV
7. sec θ < 0 and csc θ < 0

Answer. QIII
8. cos θ < 0 and tan θ > 0

Answer. QIII

Exercise Group. The point P (x, y) is on the terminal side of angle θ.
Determine the exact values of the six trigonometric functions at θ.

9.

x

y

P(-8,6)
θ

Answer. sin θ = 3
5 ,

cos θ = − 4
5 , tan θ = − 3

4 ,
csc θ = 5

3 , sec θ = − 5
4 ,

cot θ = − 4
3

10.

x

y

P(6,-7)

θ

Answer. sin θ = − 7√
85 ,

cos θ = 6√
85 , tan θ = − 7

6 ,
csc θ = −

√
85
7 , sec θ =

√
85
6 ,

cot θ = − 6
7

11. (3, −4)
Answer. sin θ = − 4

5 ,
cos θ = 3

5 , tan θ = − 4
3 ,

csc θ = − 5
4 , sec θ = 5

3 ,
cot θ = − 3

4

12. (−12, −5)
Answer. sin θ = − 5

13 ,
cos θ = − 12

13 , tan θ = 5
12 ,

csc θ = − 13
5 , sec θ = − 13

12 ,
cot θ = 12

5

13. (−2, −3)
Answer. sin θ = − 3√

13 ,
cos θ = − 2√

13 , tan θ = 3
2 ,

csc θ = −
√

13
3 , sec θ = −

√
13
2 ,

cot θ = 2
3

14. (−4, 4)
Answer. sin θ = 1√

2 ,
cos θ = − 1√

2 , tan θ = −1
csc θ =

√
2, sec θ = −

√
2,

cot θ = −1

15. (−24, 7)
Answer. sin θ = 7

25 ,
cos θ = − 24

25 , tan θ = − 7
24 ,

csc θ = 25
7 , sec θ = − 25

24 ,
cot θ = − 24

7

16. (9, −40)
Answer. sin θ = − 40

41 ,
cos θ = 9

41 , tan θ = − 40
9 ,

csc θ = − 41
40 , sec θ = 41

9 ,
cot θ = − 9

40

Exercise Group. Find the exact value of the remaining five trigonometric
functions of θ from the given information.
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17. tan θ = − 12
5 , θ is Quadrant II

Answer. sin θ = 12
13 ,

cos θ = − 5
13 , csc θ = 13

12 ,
sec θ = − 13

5 , cot θ = − 5
12

18. cos θ = 3
5 , θ is Quadrant IV

Answer. sin θ = − 4
5 ,

tan θ = − 4
3 , csc θ = − 5

4 ,
sec θ = 5

3 , cot θ = − 3
4

19. csc θ =
√

10
2 , θ is Quadrant II

Answer. sin θ =
√

10
5 ,

cos θ = −
√

6√
10 , tan θ = −

√
6

3 ,
sec θ = −

√
10√
6 , cot θ = −

√
6

2

20. cos θ = − 5
8 , θ is Quadrant III

Answer. sin θ = −
√

39
8 ,

tan θ =
√

39
5 , csc θ = − 8√

39 ,
sec θ = − 8

5 , cot θ = 5√
39

21. sec θ = −2, π < θ < 3π
2

Answer. sin θ = −
√

3
2 ,

cos θ = − 1
2 , tan θ =

√
3,

csc θ = − 2√
3 , cot θ = 1√

3

22. cot θ = − 5
3 , 3π

2 < θ < 2π

Answer. sin θ = − 3√
34 ,

cos θ = 5√
34 , tan θ = − 3

5 ,
csc θ = −

√
34
3 , sec θ =

√
34
5

23. cos θ = 2
3 , 0 < θ < π

Answer. sin θ =
√

5
3 ,

tan θ =
√

5
2 , csc θ = 3√

5 ,
sec θ = 3

2 , cot θ = 2√
5

24. tan θ = 7
4 , 0 < θ < π

2
Answer. sin θ = 7√

65 ,
cos θ = 4√

65 , csc θ =
√

65
7 ,

sec θ =
√

65
4 , cot θ = 4

7

25. csc θ = 3
2 , tan θ < 0

Answer. sin θ = 2
3 ,

cos θ = −
√

5
3 , tan θ = − 2√

5 ,
sec θ = − 3√

5 , cot θ = −
√

5
2

26. sin θ = 5
6 , cot θ > 0

Answer. cos θ =
√

11
6 ,

tan θ = 5√
11 , csc θ = 6

5 ,
sec θ = 6√

11 , cot θ =
√

11
5

27. sin θ = − 15
17 , cos θ < 0

Answer. cos θ = − 8
17 ,

tan θ = 15
8 , csc θ = − 17

15 ,
sec θ = − 17

8 , cot θ = 8
15

28. cot θ = − 1
3 , sin θ > 0

Answer. sin θ = 3
√

10
10 ,

cos θ = −
√

10
10 , tan θ = −3,

csc θ =
√

10
3 , sec θ = −

√
10

Exercise Group. Given a reference angle, t′, calculate the corresponding
angle, t, in standard position, along with the values of sin t, cos t, and tan t for:

(a) Quadrant II

(b) Quadrant III

(c) Quadrant IV

29. t′ = π
4

Answer 1. t = 3π
4 ,

sin 3π
4 = 1√

2 , cos 3π
4 = − 1√

2 ,
tan 3π

4 = −1
Answer 2. t = 5π

4 ,
sin 5π

4 = − 1√
2 , cos 5π

4 = − 1√
2 ,

tan 5π
4 = 1

Answer 3. t = 7π
4 ,

sin 7π
4 = − 1√

2 , cos 7π
4 = 1√

2 ,
tan 7π

4 = −1

30. t′ = π
3

Answer 1. t = 2π
3 ,

sin 2π
3 =

√
3

2 , cos 2π
3 = − 1

2 ,
tan 2π

3 = −
√

3
Answer 2. t = 4π

3 ,
sin 4π

3 = −
√

3
2 , cos 4π

3 = − 1
2 ,

tan 4π
3 =

√
3

Answer 3. t = 5π
3 ,

sin 5π
3 = −

√
3

2 , cos 5π
3 = 1

2 ,
tan 5π

3 = −
√

3
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31. t′ = 30◦

Answer 1. t = 150◦,
sin 150◦ = 1

2 , cos 150◦ = −
√

3
2 ,

tan 150◦ = − 1√
3

Answer 2. t = 210◦,
sin 210◦ = − 1

2 ,
cos 210◦ = −

√
3

2 ,
tan 210◦ = 1√

3
Answer 3. t = 330◦,
sin 330◦ = − 1

2 , cos 330◦ =
√

3
2 ,

tan 330◦ = − 1√
3

32. t′ = 60◦

Answer 1. t = 120◦,
sin 120◦ =

√
3

2 , cos 120◦ = − 1
2 ,

tan 120◦ = −
√

3
Answer 2. t = 240◦,
sin 240◦ = −

√
3

2 ,
cos 240◦ = − 1

2 , tan 240◦ =
√

3
Answer 3. t = 300◦,
sin 300◦ = −

√
3

2 , cos 300◦ = 1
2 ,

tan 300◦ = −
√

3

Exercise Group. For each angle θ,

(a) determine the quadrant in which θ lies;

(b) calculate the reference angle θ′;

(c) use the reference angle, θ′, to evaluate the exact values of the six trigono-
metric functions for θ.

33. θ = − 3π
4

Answer
1. QIII
Answer
2. θ′ = π

4
Answer
3. sin θ = − 1√

2 ,
cos θ = − 1√

2 ,
tan θ = 1,
csc θ = −

√
2,

sec θ = −
√

2,
cot θ = 1

34. θ = 4π
3

Answer
1. QIII
Answer
2. θ′ = π

3
Answer
3. sin θ = −

√
3

2 ,
cos θ = − 1

2 ,
tan θ =

√
3,

csc θ = − 2√
3 ,

sec θ = −2,
cot θ = 1√

3

35. θ = 11π
6

Answer
1. QIV
Answer
2. θ′ = π

6
Answer
3. sin θ = − 1

2 ,
cos θ =

√
3

2 ,
tan θ = − 1√

3 ,
csc θ = −2,
sec θ = 2√

3 ,
cot θ = −

√
3

36. θ = 7π
3

Answer 1. QI
Answer
2. θ′ = π

3
Answer
3. sin θ =

√
3

2 ,
cos θ = 1

2 ,
tan θ =

√
3,

csc θ = 2√
3 ,

sec θ = 2,
cot θ = 1√

3

37. θ = 120◦

Answer 1. QII
Answer
2. θ′ = 60◦

Answer
3. sin θ =

√
3

2 ,
cos θ = − 1

2 ,
tan θ = −

√
3,

csc θ = 2√
3 ,

sec θ = −2,
cot θ = − 1√

3

38. θ = 480◦

Answer 1. QII
Answer
2. θ′ = 60◦

Answer
3. sin θ =

√
3

2 ,
cos θ = − 1

2 ,
tan θ = −

√
3,

csc θ = 2√
3 ,

sec θ = −2,
cot θ = − 1√

3

Exercise Group. Use the fact that the trigonometric functions are periodic
to find the exact value for each expression.

39. tan 420◦

Answer.
√

3
40. csc 540◦

Answer. Un-
defined

41. sin 765◦

Answer. 1√
2

42. sec 1200◦

Answer. −2
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43. cot 8π
3

Answer. − 1√
3

44. cos 21π
4

Answer. − 1√
2

45. tan 35π
6

Answer. − 1√
3

46. sin 39π
4

Answer. − 1√
2

47. Prove the second Pythagorean Identity (Definition 1.5.20): 1 + tan2 θ =
sec2 θ.

Hint. Begin with sin2 θ+cos2 θ = 1 and divide both sides of the equation
by cos2 θ.

48. Prove the third Pythagorean Identity (Definition 1.5.20): 1 + cot2 θ =
csc2 θ.

Hint. Begin with sin2 θ+cos2 θ = 1 and divide both sides of the equation
by sin2 θ.

Exercise Group. Use the Pythagorean Identity to find the exact value of
the following:

49.
sin2 38◦+cos2 38◦

Answer. 1

50.
csc2 13◦−cot2 13◦

Answer. 1

51. cot2 200◦ −
csc2 200◦

Answer. −1
52.

sec2 6π
5 − tan2 6π

5
Answer. 1

53.
tan2 5π

7 − sec2 5π
7

Answer. −1

54. sin2 14π
13 +

cos2 14π
13

Answer. 1

Exercise Group. Use the Pythagorean Identities to express the first trigono-
metric function of θ in terms of the second function, given the quadrant.

55. sin θ, cos θ, Quadrant III
Answer. sin θ =
−

√
1 − cos2 θ

56. cos θ, sin θ, Quadrant II
Answer. cos θ =
−

√
1 − sin2 θ

57. tan θ, sec θ, Quadrant IV
Answer. tan θ =
−

√
sec2 θ − 1

58. cot θ, csc θ, Quadrant III
Answer. cot θ =√

csc2 θ − 1
59. tan θ, sin θ, Quadrant III

Answer. tan θ = − sin θ√
1−sin2 θ

60. tan θ, cos θ, Quadrant II
Answer. tan θ =

√
1−cos2 θ
cos θ

Exercise Group. Use the Pythagorean Identities to find the exact values of
the remaining five trigonometric functions of θ from the given information.

61. tan θ = − 4
3 , θ is in Quadrant

IV
Answer. sin θ = − 4

5 ,
cos θ = 3

5 , csc θ = − 5
4 ,

sec θ = 5
3 , cot θ = − 3

4

62. cos θ = − 1
4 , θ is in Quadrant

II
Answer. sin θ =

√
15
4 ,

tan θ = −
√

15, csc θ = 4√
15 ,

sec θ = −4, cot θ = − 1√
15

63. sin θ = − 2
3 , θ is in Quadrant

III
Answer. cos θ = −

√
5

3 ,
tan θ = 2√

5 , csc θ = − 3
2 ,

sec θ = − 3√
5 , cot θ =

√
5

2

64. cos θ = 3
5 , θ is in Quadrant

IV
Answer. sin θ = − 4

5 ,
tan θ = − 4

3 , csc θ = − 5
4 ,

sec θ = 5
3 , cot θ = − 3

4

Exercise Group. Use the even and odd properties to evaluate the following:
65. cos(−60◦)

Answer. 1
2

66. tan(−225◦)
Answer. −1

67. csc(−330◦)
Answer. 2
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68. sin(−90◦)
Answer. −1

69. cot(−300◦)
Answer. 1√

3

70. sec(−150◦)
Answer. − 2√

3

71. sin
(
− 11π

6
)

Answer. 1
2

72. tan
(
− 5π

4
)

Answer. −1
73. cos

(
− 4π

3
)

Answer. − 1
2

74. tan(−π)
Answer. 0

75. sec
(
− π

4
)

Answer.
√

2
76. csc

(
− 7π

6
)

Answer. 2

Exercise Group. In Remark 1.5.9, we learned that if the reference angle
is given in radians and has the form t′ = aπ

b , then the corresponding angle in
standard position, t, can be determined using an equation.

77. Prove that if t is in Quadrant II, then

t = (b − a)π
b

.

78. Prove that if t is in Quadrant III, then

t = (b + a)π
b

.

79. Prove that if t is in Quadrant IV, then

t = 2(b − a)π
b

.

Exercise Group. The Makali‘i is sailing along the Kohala Coast, maintaining
a distance of two nautical miles from the shore. An observer at Māhukona is
monitoring Makali‘i’s passage. Let d denote the length of the line connecting
Makali‘i to the Māhukona observer. Given θ as the angle formed between d and
the shore, determine Makali‘i’s distance, d, from the observer for each value of
θ, rounded to one decimal place.

Māhukona

d

2
m

ile
s

θ

80. θ = 30◦

Answer. 4
NM

81. θ = 45◦

Answer. 2.8
NM

82. θ = 60◦

Answer. 2.3
NM

83. θ = 90◦

Answer. 2
NM

84. θ = 120◦

Answer. 2.3
NM

85. θ = 135◦

Answer. 2.8
NM

86. θ = 150◦

Answer. 4
NM



Chapter 2

Graphs of the Trigonometric
Functions

2.1 Graphs of the Sine and Cosine Functions
Sunrise and sunset are vital markers for navigational orientation and course
corrections. During sunrise, we can determine the direction of wind and waves
and observe their origin. As the sun rises higher, steering by the sun becomes
impractical, and we must instead depend on swells to keep our course. At
sunset, we can reassess your position and take note of any changes in wind
and swell patterns. Although the general pattern is for the sun to rise in the
east and set in the west, its exact position on the horizon, known as solar
declination, varies throughout the year.

To understand why the position changes, we must first learn about Earth’s
axial tilt, which represents the angle between the Earth’s rotational axis and
its orbital plane around the Sun. To conceptualize this tilt, envision a pole
passing through the Earth’s center, extending from the North to the South
Pole, with the Earth revolving around this axis. Each complete rotation of the
Earth on this axis corresponds to one day. As the Earth travels along its orbit
around the Sun with a constant tilt of the axis, the orientation of the Earth’s
axial tilt causes either the North Pole or the South Pole to tilt toward the Sun.
This tilt varies depending on the Earth’s location in its orbit relative to the
Sun.

During the equinoxes, which mark the transition from winter to spring and
from summer to fall, the Earth’s axis is not tilted towards or away from the
Sun. Consequently, on these days, the Sun rises due east and sets due west,
and the duration of day and night is approximately equal.

Following the fall equinox in the Southern Hemisphere, typically occurring
around March 20th, the Earth proceeds along its orbit around the Sun, leading
the Southern Hemisphere to tilt away from the Sun. As a result, the Sun’s rising
position progressively moves northward each day. By the time of the winter
solstice, around June 20th, the Sun rises from its northernmost position,
resulting in the shortest day in the Southern Hemisphere and the longest day
of the year in the Northern Hemisphere.

After the winter solstice, the Earth’s axial tilt remains the same, but the
Southern Hemisphere starts tilting toward the Sun. This causes the Sun’s rising
position to gradually shift southward each day. When the spring equinox
arrives, approximately on September 22nd, the Sun rises due east once again,
and day and night are once more of equal duration.

89
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As the Southern Hemisphere continues to tilt towards the Sun, the Sun’s
rising position moves even further south each day. By the time of the summer
solstice, approximately on December 21st, the Sun rises from its southernmost
position, resulting in the longest day of the year in the Southern Hemisphere
and the shortest day in the Northern Hemisphere.

Following the summer solstice, the Southern Hemisphere begins tilting away
from the Sun, causing the Sun’s rising position to gradually shift northward
each day. This movement continues until the next fall equinox, completing the
annual cycle.

June
Solstice

December
Solstice

September
Solstice

March
Solstice

Figure 2.1.1 The illustration shows the relative positions and timing of solstice,
equinox and seasons in relation to the Earth’s orbit around the Sun and the
axial tilt. During the June solstice, the northern hemisphere is tilted towards
the Sun, while the southern hemisphere is tilted away. Conversely, during the
December solstice, the southern hemisphere is tilted towards the Sun, and the
northern hemisphere is tilted away. During the March and September equinoxes,
the Earth’s axis is perpendicular to the line connecting the Earth to the Sun,
causing the Sun to appear directly above the equator. As a result, day and
night are approximately equal in length all over the world.

The position where the Sun rises throughout the year exhibits a repeating
pattern, characterized as a periodic function with a cycle of about one year.
This function can be mathematically represented as either a sine or cosine
function. Graphically, it illustrates the sunrise position on the horizon relative
to the east (Hikina) as time progresses. By examining this function, we can
observe the gradual northward and southward movement of the sunrise position
throughout the year. Key dates such as the equinoxes and solstices mark
significant points in this pattern, providing insights into the changing seasons
and variations in daylight hours.

In this section, we will explore the periodic nature of sine and cosine
functions and study their transformations. Studying the graphs of sine and
cosine functions provides valuable insights into the world around us. The graphs
of the remaining trigonometric functions will be covered in Section 2.2.
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2.1.1 Domain and Range of Sine and Cosine
The domains for sin(θ) and cos(θ) consist of the set of the inputs for the functions.
Since any angle θ can be input into sine and cosine and still have these functions
defined, the domain for both sine and cosine is all real numbers. Recall that in
Section 1.3, if P (x, y) is any point on the unit circle that corresponds to the
angle θ, we defined sin θ = y and cos θ = x. Given the constraints on the unit
circle, −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1, and thus

−1 ≤ sin θ ≤ 1, and − 1 ≤ cos θ ≤ 1.

Since the range of a function consists of all its outputs, we conclude that the
range of both the sine and cosine functions spans all real numbers between -1
and 1.
Remark 2.1.2 Domain and Range for the Sine and Cosine Functions.
Table 2.1.3 summarizes the domains and ranges for the sine and cosine functions.

Table 2.1.3 Domains and Ranges of Sine and Cosine

Function Domain Range

sin θ All real numbers, (−∞, ∞) All real numbers from -1 to 1, [−1, 1]

cos θ All real numbers, (−∞, ∞) All real numbers from -1 to 1, [−1, 1]

2.1.2 The Sine Function
Convention 2.1.4 In Chapter 1, trigonometric functions typically use θ or
t as the variable in the domain, such as y = cos θ and y = sin t. However,
when graphing functions on the Cartesian plane (xy-coordinate system), x is
conventionally used as the variable in the domain. Therefore, when graphing
trigonometric functions, we will use x as the variable, for example y = cos x
and y = sin x.

The sine function, as discussed in Subsection 1.5.4, is a periodic functions
with period 2π. To graph y = sin x, we can focus on the interval [0, 2π]. By
plotting the points on the graph over this interval, we can then repeat the
values over the entire domain to complete the graph.

Recall from Definition 1.3.2 that on the unit circle, sin θ is defined to be
the y-value of the terminal point P (x, y) on the unit circle associated with the
angle θ. As the angle increases from 0 to π

2 , the y-value also increases from 0
to 1. When the angle continues from π

2 to 3π
2 , the y-value decreases from 1 to

−1. "Finally, as the angle increases from 3π
2 to 2π, the y-value increases from

−1 to 0. This behavior is shown in Figure 2.1.5.
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Standalone
Figure 2.1.5 As θ moves from 0◦ to 360◦, this figure plots the values of
y = sin θ. Move the slider for θ to see how changing the angle affects sin θ.
Note that while we will generally be using radians when graphing trigonometric
functions, this figure uses degrees to help visualize the angle. For example, we
may not be aware that 2 radians (≈ 114.6◦) lies in Quadrant II. If you are
viewing the PDF or a printed copy, you can scan the QR code or follow the
“Standalone” link to explore the interactive version online.

Next we recall known values for the sine function listed in Table 2.1.6.
Table 2.1.6 Values for y = sin x.

x sin x (x, y) x sin x (x, y)
0 0 (0, 0) π 0 (π, 0)
π
6

1
2

(
π
6 , 1

2
) 7π

6 − 1
2

( 7π
6 , − 1

2
)

π
4

1√
2

(
π
4 , 1√

2

)
5π
4 − 1√

2

(
5π
4 , − 1√

2

)
π
3

√
3

2

(
π
3 ,

√
3

2

)
4π
3 −

√
3

2

(
4π
3 , −

√
3

2

)
π
2 1

(
π
2 , 1

) 3π
2 −1

( 3π
2 , −1

)
2π
3

√
3

2

(
2π
3 ,

√
3

2

)
5π
3 −

√
3

2

(
5π
3 , −

√
3

2

)
3π
4

√
2

2

(
3π
4 ,

√
2

2

)
7π
4 −

√
2

2

(
7π
4 , −

√
2

2

)
5π
6

1
2

( 5π
6 , 1

2
) 11π

6 − 1
2

( 11π
6 , − 1

2
)

2π 0 (2π, 0)

Now that we have a visual understanding of the graph for y = sin x, we can
utilize the data from Table 2.1.6 to map out the points. This process enables
us to construct the graph illustrated in Figure 2.1.7, representing one complete
period of the sine function.

https://www.kamuelayong.com/trigonometry/geogebra-sine-animation.html
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π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

−0.5

0.5

1

y = sin x

x

y

Figure 2.1.7 The values in Table 2.1.6 plotted with a smooth curve connecting
the points to make the graph for y = sin(x).

Since the graph in Figure 2.1.7 represents one period, we can now complete
the graph of y = sin x by extending the pattern in both directions to obtain
Figure 2.1.8.

−2π −π π 2π 3π

−1

−0.5

0.5

1
y = sin x

x

y

Figure 2.1.8 The graph for y = sin(x).
Notice the sine function’s symmetry with respect to the origin, a char-

acteristic supported in Section 1.5.7, where we learned that sine is an odd
function.
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2.1.3 The Cosine Function
Similarly, we can construct a plot for the cosine function, shown in Figure 2.1.9.

Standalone
Figure 2.1.9 As θ moves from 0◦ to 360◦, this figure plots the values of
y = cos θ. Move the slider for θ to see how changing the angle affects cos θ.
Note that while we will generally be using radians when graphing trigonometric
functions, this figure uses degrees to help visualize the angle. If you are viewing
the PDF or a printed copy, you can scan the QR code or follow the “Standalone”
link to explore the interactive version online.

By plotting points for y = cos x and using the fact that the cosine function
is periodic, we obtain the graph for cosine over the entire domain. This is
shown in Figure 2.1.10.

−2π −π π 2π 3π

−1

−0.5

0.5

1 y = cos x

x

y

Figure 2.1.10 The graph for y = cos(x).
In alignment with Section 1.5.7, observe that the graph of cosine is symmetric

about the y-axis, confirming that it is an even function.

Definition 2.1.11 The graphs for the sine and cosine functions are commonly
referred to as sinusoidal graphs or sinus curves. ♢

2.1.4 Graphing Transformations of Sine and Cosine
Now that we’ve become familiar with the graphs of the sine and cosine functions,
let’s apply algebraic graphing techniques to these functions. Recall that when

https://www.kamuelayong.com/trigonometry/geogebra-cosine-animation.html
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D > 0, the graph of y = f(x) + D shifts the graph of y = f(x) upward by D
units, and the graph of y = f(x) − D shifts the graph of y = f(x) downward
by D units.

Definition 2.1.12 Vertical Shift. The graphs of the functions

y = sin x + D and y = cos x + D

represent an upward vertical shift of the graphs y = sin(x) and y = cos(x)
by D units, respectively.

Similarly, the functions

y = sin x − D and y = cos x − D

depict the graphs of y = sin(x) and y = cos(x) with a downward vertical
shift by D units, respectively. ♢

Example 2.1.13 Vertical Shifts. Graph the functions

(a) y = sin(x) + 2

Solution.

−2π −π π 2π 3π

−1

1

2

3

y = sin x

y = sin(x) + 2

x

y

Figure 2.1.14 The graph of y = sin(x) + 2 is the same as the graph of
y = sin(x) but shifted up by 2 units.

(b) y = cos(x) − 1

□
Additionally, remember that the graph y = −f(x) reflects the graph of

y = f(x) about the x-axis.

Definition 2.1.15 Reflection about the x-axis. The functions

y = − sin x and y = − cos x

represent the graphs of y = sin(x) and y = cos(x) with a reflection about
the x-axis, respectively. ♢

Example 2.1.16 Reflections about the x-axis. Graph y = − cos(x)
Solution.
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−2π −π π 2π 3π

−1

1

y = cos x

y = − cos(x)

x

y

Figure 2.1.17 The graph y = − cos(x) is obtained by multiplying every y-value
of the y = cos(x) graph by −1. This transformation reflects all points across
the x-axis, turning positive values negative and negative values positive.

□
Similarly, recall that the graph of y = f(−x) reflects the graph of y = f(x)

about the y-axis.

Definition 2.1.18 Reflection about the y-axis. The functions

y = sin(−x) and y = cos(−x)

represent the graphs of y = sin(x) and y = cos(x) with a reflection about
the y-axis, respectively. ♢

Example 2.1.19 Reflections about the y-axis. Graph y = sin(−x) + 1.
Solution.

−2π −π π 2π 3π

1

2

y = sin(x) + 1

y = sin(−x) + 1

x

y

Figure 2.1.20 The graph y = sin(−x) + 1 is obtained by reflecting the graph
of y = sin(x) about the y-axis and then vertically shifting it upward by 1. This
transformation turns positive values of x negative and negative values of x
positive, and increases every y-value by 1.
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□

Example 2.1.21 Vertical Stretches and Compressions. Graph each
function:

1. y = 2 cos(x)

2. y = 1
2 cos(x)

Solution.

−2π −π π 2π 3π

−2

−1

1

2

y = cos x

y = 2 cos x

y = 1
2 cos x

x

y

Figure 2.1.22 The graph of y = 2 cos(x) is achieved by vertically stretching
the y-values of y = cos(x) by a factor of 2. Similarly, the graph of y = 1

2 cos(x)
is obtained by vertically compressing the y-values of y = cos(x) by a factor of
1
2 .

□
The factor multiplied at the front of the cosine function plays a crucial

role in stretching and compressing the graph. This factor is known as the
amplitude, measuring the maximum vertical distance from the midline to
the peak or trough of a sinusoidal wave. In Example 2.1.21, the amplitude of
y = 2 cos(x) is 2, indicating a vertical stretch by a factor of 2 compared to
the standard cosine function. Conversely, for y = 1

2 cos(x), the amplitude is 1
2 ,

representing a vertical compression by a factor of 1
2 .

Definition 2.1.23 Amplitude. For a sinusoidal function, the amplitude,
denoted as |A|, is the height of the function, representing half the distance
between its maximum and minimum values:

|A| = amplitude = maximum − minimum
2 .

In other words, the amplitude is the vertical distance from the midline to
the maximum or minimum value of the function. The midline is a horizontal
line representing the average value of the function. It can be calculated by:

y = maximum + minimum
2 .

For a graph oscillating symmetrically about the x-axis, the amplitude is simply
the maximum value of the function.
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In general, for

y = A · sin(x) or y = A · cos(x),

the amplitude is given by |A|. This absolute value ensures that amplitude is
always a positive value, representing the magnitude of the vertical stretching or
compression. ♢

Definition 2.1.24 Vertical Stretch/Compression. The functions

y = A sin x and y = A cos x

represents a sine and cosine function, respectively, with an amplitude of |A|.
The amplitude determines the vertical stretch or compression of the graph.

If |A| > 1, the graph undergoes a vertical stretch, increasing the distance
between the peaks and troughs.

If 0 < |A| < 1, the graph undergoes a vertical compression, reducing the
distance between the peaks and troughs. ♢

Example 2.1.25 Graph y = −4 sin x and identify the amplitude.
Solution. The amplitude is | − 4| = 4.

−2π −π π 2π 3π

−4

−1

1

2

3

4

y = sin x

y = −4 sin x

x

y

Figure 2.1.26 Since the amplitude of y = −4 sin(x) is 4, the graph is stretched
by a factor of 4 and will oscillate between −4 and 4. Additionally, the negative
sign indicates that the graph is reflected about the x-axis.

□
Next we will look at functions of the form

y = sin Bx and y = cos Bx.

Recall from algebra that for functions of the form y = f(Bx), a key factor
emerges: when |B| > 1, the graph undergoes horizontal compression by a factor
of 1

|B| ; conversely, when 0 < |B| < 1, the graph is horizontally stretched by a
factor of 1

|B| . Given that the period of sine and cosine is 2π, the horizontal
stretching or compressing of a period will be by a factor of 1

|B| .
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Definition 2.1.27 Period. For sine and cosine functions of the form

y = sin Bx and y = cos Bx

the period is defined as
period = 2π

|B|
.

Thus, if |B| > 1, the period is compressed; if 0 < |B| < 1, the period is
stretched. ♢

Definition 2.1.28 Horizontal Stretch/Compression. The graphs func-
tions

y = sin Bx and y = cos Bx,

undergo a horizontal stretch or compression by a value of 1
|B| .

If |B| > 1, the graph undergoes a horizontal compression, making the period
shorter.

If 0 < |B| < 1, the graph undergoes a horizontal stretch, making the period
longer. ♢

Example 2.1.29 Horizontal Stretches and Compressions. Identify the
period and graph one period for each of the following functions:

1. y = sin(2x)

2. y = sin
(

1
2x

)

3. y = sin
(

1
3x

)
Solution.

1. The period for y = sin(2x) is 2π
2 = π.

2. The period for y = sin
( 1

2 x
)

is 2π
1
2

= 2π · 2
1 = 4π.

3. The period for y = sin
( 1

3 x
)

is 2π
1
3

= 2π · 3
1 = 6π.
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π 2π 3π 4π 5π 6π

−1

1
y = sin x

y = sin 2x y = sin 1
2 x y = sin 1

3 x

x

y

Figure 2.1.30 One period of each of y = sin(2x), y = sin
( 1

2 x
)
, and y = sin

( 1
3 x

)
compared to one period of the graph of y = sin(x). Observe the distinct effects
of horizontal compression (when B = 2, reducing the period to π) and stretching
(when B = 1

2 and B = 1
3 , increasing the period to 4π and 6π, respectively).

□
Our final transformation involves functions of the form y = f(x − c). When

c > 0, the graph of y = f(x) is shifted by c units to the right; when c < 0, it is
shifted |c| units to the left.

Definition 2.1.31 Phase Shift. The functions

y = sin(B(x − C)) and y = cos(B(x − C)) (2.1.1)

undergo a horizontal shift, known as phase shift, of C units. If C > 0, the
phase shift is to the right; if C < 0, it is to the left. ♢

Remark 2.1.32 Functions of the form y = sin(Bx−E) and y = cos(Bx−
E). Note that you may see functions written in the form

y = sin(Bx − E) and y = cos(Bx − E). (2.1.2)

There is a subtle yet important difference between (2.1.1) and (2.1.2). In
(2.1.1), the term B, affecting the period, is multiplied by both x and C, the
phase shift. In (2.1.2), B is only multiplied by x. We can rewrite (2.1.2) by
factoring out B as

y = sin
(

B

(
x − E

B

))
and y = cos

(
B

(
x − E

B

))
.

This form aligns with (2.1.1). Therefore, for equations of the form

y = sin(Bx − E) and y = cos(Bx − E)

the phase shift is E
B units.
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Example 2.1.33 Phase Shift. Identify the period and phase shift of each
function, and graph the function.

(a) y = cos(x − π)

Solution. Since this equation is of the form y = cos(Bx − E), we have
B = 1 and E = π. Therefore,

period = 2π

|B|
= 2π

1 = 2π

and

phase shift = E

B
= π

1 = π.

A positive value for the phase shift indicates a shift to the right. It’s
important to note that, given B = 1, the phase shift is simply E = π.

−2π −π π 2π 3π 4π

−1

1

y = cos x y = cos(x − π)

π

x

y

Figure 2.1.34 The graph of y = cos(x − π) is the graph of y = cos x with
a phase shift of π units to the right.

(b) y = sin
(

π
6 (x + 2)

)
Solution. Since the given equation is in the form y = sin

(
π
6 (x + 2)

)
,

we can identify B = π
6 and C = −2. Consequently,

period = 2π

|B|
= 2π

π
6

= 2π · 6
π

= 12

and

phase shift = C = −2.

The negative sign indicates a phase shift to the left by 2 units.
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To graph y = sin
(

π
6 (x + 2)

)
, begin by graphing the sine function y =

sin
(

π
6 x

)
with a period of 12. Then, apply a phase shift of 2 units to the

left on the resulting graph.

−6 −4 −2 2 4 6 8 10 12

−1

1
y = sin x

y = sin
(

π
6 x

)

period=2π ≈ 6.28

period=12

x

y

Figure 2.1.35 The graph of y = sin
(

π
6 x

)
represents the sine function

y = sin x with a horizontal stretch, resulting in a period of 12.

−6 −4 −2 2 4 6 8 10 12

−1

1

y = sin
(

π
6 x

)
y = sin

(
π
6 (x + 2)

)

2

x

y

Figure 2.1.36 Shifting the graph of y = sin
(

π
6 x

)
by two units to the left

results in the graph of y = sin
(

π
6 (x + 2)

)
.

□
We will now summarize the transformations by consolidating them into a
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single equation.

Remark 2.1.37 Transformations of Sine and Cosine. When dealing
with functions in the form

y = A sin(B(x − C)) + D and y = A cos(B(x − C)) + D

we can express the transformations as follows:

• Amplitude and Vertical Stretch/Compression: |A|

◦ |A| is the value of the amplitude.
◦ If |A| > 1, there is vertical stretching.
◦ If 0 < |A| < 1, there is vertical compression.

• Period and Horizontal Stretch/Compression: |B|

◦ The period is 2π
|B| .

◦ If |B| > 1, there is horizontal compression and the period is short-
ened.

◦ If 0 < |B| < 1, there is horizontal stretching and the period is
lengthened.

• Phase Shift: C

◦ If C is positive, there is a shift to the right.
◦ If C is negative, there is a shift to the left.

• Vertical Shift: D

◦ If D is positive, there is a shift upward.
◦ If D is negative, there is a shift downward.

• Reflection about the x-axis:

◦ If A is negative (A < 0), there is a reflection about the x-axis.

• Reflection about the y-axis:

◦ If B is negative (B < 0), there is a reflection about the y-axis.

Remark 2.1.38 Transformations of the form y = A · sin(Bx − E) + D
and y = A · cos(Bx − E) + D. For functions of the form

y = A sin(Bx − E) + D and y = A cos(Bx − E) + D

the transformations are the same as above, except for the phase shift where we
replace C with E

B .
Explore the effects of various transformations using the interactive features

in Figure 2.1.39.
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Standalone
Figure 2.1.39 Manipulate the graphs of sine and cosine by adjusting the
sliders for A, B, C, and D. Observe the effects on amplitude, period, phase and
vertical shifts, as well as reflections about the x- and y-axes. Additionally, we
can toggle between the sine and cosine graphs by selecting the corresponding
function. If you are viewing the PDF or a printed copy, you can scan the QR
code or follow the “Standalone” link to explore the interactive version online.

2.1.5 Exercises

Exercise Group. Graph the function.
1. y = sin(x) − 3

Answer.

−2π −π π 2π 3π

−5

−4

−3

−2

−1

1

y = sin(x) − 3

x

y

2. y = −2 sin(x)
Answer.

−2π −π π 2π 3π

−2

−1

1

2
y = −2 sin(x)

x

y

3. y = 4 cos(x)
Answer.

−2π −π π 2π 3π

−4

−3

−2

−1

1

2

3

4

y = 4 cos(x)

x

y

4. y = cos(x) + 1
Answer.

−2π −π π 2π 3π

1

2 y = cos(x) + 1

x

y

5. y = 1
2 sin(x)

Answer.

−2π −π π 2π 3π

−1

−0.5

0.5

1

y = 1
2 sin(x)

x

y

6. y = 5 cos(x)
Answer.

−2π −π π 2π 3π

−6
−5
−4
−3
−2
−1

1
2
3
4
5
6

y = 5 cos(x)

x

y

https://www.kamuelayong.com/trigonometry/geogebra-sinusoidal-transformation-animation.html
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7. y = sin(x) + 2
Answer.

−2π −π π 2π 3π

1

2

3

4

y = sin(x) + 2

x

y

8. y = −4 cos(x) − 2
Answer.

−2π −π π 2π 3π

−6

−5

−4

−3

−2

−1

1

2

3
y = −4 cos(x) − 2

x

y

9. y = −3 sin(x) + 2
Answer.

−2π −π π 2π 3π

−2

−1

1

2

3

4

5

6
y = −3 sin(x) + 2

x

y

10. y = 4 cos(x) − 1
Answer.

−2π −π π 2π 3π

−5

−4

−3

−2

−1

1

2

3

4
y = 4 cos(x) − 1

x

y

11. y = 2 sin(x) − 4
Answer.

−2π −π π 2π 3π

−6

−5

−4

−3

−2

−1

1

y = 2 sin(x) − 4

x

y

12. y = − 1
2 cos(x) − 1

Answer.

−2π −π π 2π 3π

−2

−1

1

y = − 1
2 cos(x) − 1

x

y

Exercise Group. Determine the amplitude and period for each function,
and sketch the graph.

13. y = −2 sin(3x)
Answer. Amplitude: 2;
Period: 2π

3 ;

−π − 2π
3

− π
3

π
3

2π
3

π 4π
3

5π
3

2π

−2

−1

1

2

y = −2 sin(3x)

x

y

14. y = 3 cos
(

π
4 x

)
Answer. Amplitude: 3;
Period: 8;

−6 −4 −2 2 4 6 8 10

−3

−2

−1

1

2

3

y = 3 cos
(

π
4 x

)

x

y



CHAPTER 2. GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 106

15. y = 1
2 sin

(
π
6 x

)
Answer. Amplitude: 1

2 ;
Period: 12;

−6 −4 −2 2 4 6 8 10 12 14 16 18

−1.5

−1

−0.5

0.5

1

1.5

y = 1
2 sin

(
π
6 x

)
x

y

16. y = −4 cos(2x)
Answer. Amplitude: 4;
Period: π;

−2π −π π 2π 3π

−4

−3

−2

−1

1

2

3

4
y = −4 cos(2x)

x

y

17. y = − 2
3 sin

(
π
2 x

)
Answer. Amplitude: 2

3 ;
Period: 4;

−4 −2 2 4 6 8

−1

− 2
3

− 1
3

1
3

2
3

1

y = − 2
3 sin

(
π
2 x

)

x

y

18. y = 5
4 cos

(
π
3 x

)
Answer. Amplitude: 5

4 ;
Period: 6;

−6 −3 3 6 9 12

− 5
4

− 3
4

− 1
4

1
4

3
4

5
4

y = 5
4 cos

(
π
3 x

)

x

y

19. y = 2
7 sin( 1

2 x)
Answer. Amplitude: 2

7 ;
Period: 4π;

−2π −π π 2π 3π 4π

− 1
2

− 2
7

2
7

1
2

y = 2
7 sin( 1

2 x)

x

y

20. y = − 3
5 cos

(
π
8 x

)
Answer. Amplitude: 3

5 ;
Period: 16;

−8 −4 4 8 12 16 20 24

−1

− 3
5

3
5

1

y = − 3
5 cos

(
π
8 x

)

x

y

Exercise Group. Match the given function to one of the graphs below.

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(A)

x

y

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(B)

x

y
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−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(C)

x

y

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(D)

x

y

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(E)

x

y

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(F)

x

y

21. y = 2 sin(x) + 1
Answer. D

22. y = 3 cos(4x)
Answer. E

23. y = −2 sin(2x)
Answer. B

24. y = 3 sin
( 1

2 x
)

Answer. A
25. y = − cos

(
x − π

4
)

Answer. C
26. y = cos

( 1
2 x

)
− 1

Answer. F

Exercise Group. Find the amplitude, period, phase shift, and vertical shift
of each function and sketch the graph.

27. y = 3
4 sin

(
π
3 (x − 2)

)
Answer. Amplitude: 3

4 ;
Period: 6; Phase Shift: 2;
Vertical Shift: 0

−3 −2 −1 1 2 3 4 5 6 7 8

−1

−0.5

0.5

1
y = 3

4 sin
(

π
3 (x − 2)

)

x

y

28. y = −2 cos
(

π
2

(
x − 1

2
))

Answer. Amplitude: 2;
Period: 4; Phase Shift: 0.5;
Vertical Shift: 0

−3 −2 −1 1 2 3 4 5 6 7 8

−2

−1

1

2
y = −2 cos

(
π
2

(
x − 1

2
))

x

y
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29. y = 2 sin (3x − π)
Answer. Amplitude: 2;
Period: 2π

3 ; Phase Shift: π
3 ;

Vertical Shift: 0

− 2π
3

− π
3

π
3

2π
3

π

−2

−1

1

2

y = 2 sin (3x − π)

x

y

30. y = −3 cos
(
2x + π

3
)

Answer. Amplitude: 3;
Period: π; Phase Shift: − π

6 ;
Vertical Shift: 0

−π − 2π
3

− π
3

π
3

2π
3

π

−3

−2

−1

1

2

3
y = −3 cos

(
2x + π

3
)

x

y

31. y = 1
2 sin (π(x − 1)) + 3

2
Answer. Amplitude: 1

2 ;
Period: 2; Phase Shift: 1;
Vertical Shift: 3

2

−2 −1 1 2 3 4

0.5

1

1.5

2

2.5

y = 1
2 sin (π(x − 1)) + 3

2

x

y

32. y = 3 cos
(

π
4 (x + 2)

)
− 2

Answer. Amplitude: 3;
Period: 8; Phase Shift: −2;
Vertical Shift: −2

−4 −2 2 4 6 8 10 12 14

−5

−4

−3

−2

−1

1
y = 3 cos

(
π
4 (x + 2)

)
− 2

x

y

33. y = − 2
3 sin

(
2x − π

3
)

+ 2
3

Answer. Amplitude: 2
3 ;

Period: 2; Phase Shift: π
6 ;

Vertical Shift: 2
3

π
3 − π

6
π
6

π
3

π
2

2π
3

5π
6

π 7π
6

4π
3

1
3

2
3

1

4
3

5
3

y = − 2
3 sin

(
2x − π

3
)

+ 2
3

x

y

34. y = 5
3 cos

( 4π
5 (x + 2)

)
Answer. Amplitude: 5

3 ;
Period: 2.5; Phase Shift: −2;
Vertical Shift: 0

−2 −1 1 2 3

-2

-1

1

2

y = 5
3 cos

( 4π
5 (x + 2)

)

x

y
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35. y = − sin
( 1

2 x − π
4

)
− 1

Answer. Amplitude: 1;
Period: 4π; Phase Shift: π

2 ;
Vertical Shift: −1

−π π 2π 3π 4π 5π 6π

−2

−1.5

−1

−0.5

y = − sin
( 1

2 x − π
4 )

)
− 1 xy

36. y = 4 cos
( 1

2
(
x + 2π

3
))

+ 3
Answer. Amplitude: 4;
Period: 4π; Phase Shift: − 2π

3 ;
Vertical Shift: 3

−π π 2π 3π 4π 5π 6π
−1

1
2
3
4
5
6
7

y = 4 cos
( 1

2
(
x + 2π

3
))

+ 3

x

y

Solar Declination. At the start of this section, we explored the effects
of axial tilt on Earth’s seasons, considering the sun’s declination—the angle
between the equator and a line drawn from the center of the Earth to the center
of the Sun. When observing the sunrise, the sun’s declination is the angle from
the sunrise to due east.

During the June Solstice, the declination is δ = 23.45◦, causing the sun to
rise 23.45◦ to the north of east. On the December Solstice, the declination is
δ = −23.45◦, resulting in the sun rising 23.45◦ to the south of east.

Conversely, during the spring and fall equinox when the declination is
δ = 0◦, the sun rises precisely at due east. This period holds significant
historical importance, as observers, both in the past and present, have utilized
this time to precisely determine the eastward direction from their positions.
This practice is widespread across various cultures, with individuals using the
equinox to establish directional markers. Homes, ceremonial sites, and other
notable locations are often intentionally oriented based on the equinox.

In terms of navigation, knowing the solar declination angle for a specific
time of year allows observers to measure the same angle down or up from where
the sun rose during sunrise, thereby determining the direction of east.

To approximate the solar declination angle δ in degrees, we can use the
following equation derived in [2.1.6.1]

δ = −23.45◦ · cos
(

360
365 · (N + 10)

)
where N represents the day of the year, with January 1 denoted as N = 1, and
December 31 as N = 365.

For each of the following problems, calculate the solar declination for the
given day, assuming a 365-day year. Round your answer to two decimals.

37. March 22nd (81st day of the
year).
Answer. δ = −0.10◦

38. June 21st (172nd day of the
year).
Answer. δ = 23.45◦

39. September 21st (264th day of
the year).
Answer. δ = −0.10◦

40. December 21st (355th day of
the year).
Answer. δ = −23.45◦

41. April 1st (91st day of the
year).
Answer. δ = 3.92◦

42. September 3rd (246th day of
the year).
Answer. δ = 7.05◦

43. May 28th (148th day of the
year).
Answer. δ = 21.40◦

44. November 23rd (327th day of
the year).
Answer. δ = −20.78◦
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45. What is significant about
March 22nd, June 21st,
September 21st, and
December 21st?
Answer. They are the
equinoxes and soltices.

46. Graph the solar declination
angle over time. Use the
horizontal axis for N , the day
of the year, and the vertical
axis for δ, representing the
solar declination angle in
degrees.
Answer.

100 200 300

−20

−10

10

20

N

δ

Rough Seas. Wave heights, defined as the vertical distance between the
crest and the trough of a wave, can vary in the open ocean. However, the
height of the wave alone does not necessarily indicate calm or choppy sailing
conditions. Another important factor is the wave period, representing the
time between waves, which affects the smoothness of sailing. For each given
equation, where w(t) is the number of feet the wave is above the mean sea level
at t seconds, calculate: a) the wave height; b) the wave period; and plot the
wave for two periods.

Wave Height

Peak
Trough

47. w(t) = 4 cos
(

π
8 t

)
Answer. a) 8 feet; b) 16 seconds
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8 16 24 32 40

−10

−5

5

10

t

w

48. w(t) = 9 cos
(

π
8 t

)
Answer. a) 18 feet; b) 16 seconds

8 16 24 32 40

−10

−5

5

10

t

w

49. w(t) = 4 cos
(

π
4 t

)
Answer. a) 8 feet; b) 8 seconds
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8 16 24 32 40

−10

−5

5

10

t

w

50. Which of the three waves above would give the smoothest sailing?
Answer. w(t) = 4 cos

(
π
8 t

)

2.1.6 References
[1] A. E. Dixon and J. D. Leslie, Solar Energy Conversion, Pergamon; (1979)
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2.2 Graphs of Other Trigonometric Functions
This section explores the graphs of tangent, cotangent, cosecant, and secant,
including their periodic behaviors and transformations.

2.2.1 Domains of the Tangent and Cotangent Functions
Recall the Quotient Identity for tangent (Definition 1.4.3):

tan x = sin x

cos x
.

tan x is undefined when the denominator is zero, that is, when cos x = 0.
This leads to undefined points at x = . . . , − 3π

2 , − π
2 , π

2 , 3π
2 , 5π

2 , . . .. In general,
any angle of the form n π

2 , where n is an odd integer, should be excluded from
the domain since tangent is undefined at these values.

Similarly, we defined the cotangent function as

cot x = cos x

sin x
.

The denominator becomes zero when sin x = 0, corresponding to x =
. . . , −π, 0, π, 2π, . . .. In general, cot x is undefined for angles of the form nπ,
where n is an integer. These angles should be excluded from the domain of
cotangent.

Remark 2.2.1 Domains for Tangent and Cotangent. The domains for
tangent and cotangent functions are given in Table 2.2.2.

Table 2.2.2 Domains of the tangent and cotangent functions.

Function Domain

tan θ All real numbers except odd integer multiples of π
2 (90◦)

cot θ All real numbers except integer multiples of π (180◦)

2.2.2 Ranges of the Tangent and Cotangent Functions
To determine the range of the tangent function, consider the point P (x, y) on
the unit circle corresponding to the angle θ, and let a be a real number such
that a = tan θ = y

x .
Multiplying both sides by x, we obtain:

y = ax.

Squaring both sides yields:

y2 = a2x2.

Substituting into the Pythagorean Identity (Definition 1.5.20), we have:

1 = x2 + y2 = x2 + a2x2 = x2(1 + a2).

Dividing both sides by 1 + a2 and taking the square root gives:
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x = ± 1√
1 + a2

.

Similarly, we obtain:

y = ± a√
1 + a2

.

Thus, we conclude:

tan θ = y

x
=

a√
1+a2

1√
1+a2

= a.

In other words, since a can be any real number and tan θ = a, the range
of the tangent function consists of all real numbers. A similar method can be
used to show that the range of the cotangent function is also the set of all real
numbers.
Remark 2.2.3 Ranges for Tangent and Cotangent. The ranges for
tangent and cotangent functions are given in Table 2.2.4.

Table 2.2.4 Ranges of the tangent and cotangent functions.

Function Range

tan x All real numbers

cot x All real numbers

2.2.3 Domains of the Cosecant and Secant Functions
Consider the Reciprocal Identity defining the cosecant function (Definition 1.4.2):

csc x = 1
sin x

.

When sin x = 0, corresponding to x = . . . , −π, 0, π, 2π, . . ., the denominator
becomes zero. Therefore, csc x is undefined for angles of the form nπ, where n
is an integer, and these values should be excluded from the domain.

Similarly, since the secant function is defined as

sec x = 1
cos x

we see that sec x is undefined when cos x = 0. This occurs at x = . . . , − 3π
2 , − π

2 , π
2 , 3π

2 , 5π
2 , . . .,

and thus any angle of the form n π
2 , where n is an odd integer, should be excluded

from the domain of sec x.
Remark 2.2.5 Domains for Cosecant and Secant. The domains for
cosecant and secant functions are given in Table 2.2.6.
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Table 2.2.6 Domains of the trigonometric functions.

Function Domain

csc x All real numbers except integer multiples of π (180◦)

sec x All real numbers except odd integer multiples of π
2 (90◦)

2.2.4 Ranges of the Cosecant and Secant Functions
If the angle is not an integer multiple of π, i.e. x ̸= nπ, where n is an integer,
then cosecant is defined by the Reciprocal Identity as

csc x = 1
sin x

.

In Subsection 2.1.1, we learned that the function y = sin x has a range of

−1 ≤ sin x ≤ 1.

Therefore, taking the reciprocal of the range of sine, we get

csc x ≤ −1 or csc x ≥ 1.

In other words, the range of the cosecant function is all real numbers less than
or equal to −1 or greater than or equal to 1.

Similarly, since −1 ≤ cos x ≤ 1, we can get the range for the secant function
as

sec x ≤ −1 or sec x ≥ 1
or all real numbers less than or equal to −1 or greater than or equal to 1.

Remark 2.2.7 Ranges for Cosecant and Secant. The ranges for cosecant
and secant functions are given in Table 2.2.8.

Table 2.2.8 Ranges of the cosecant and secant functions.

Function Range

csc x All real numbers less than or equal to −1 or greater than or equal to 1

sec x All real numbers less than or equal to −1 or greater than or equal to 1

2.2.5 The Tangent Function
In Subsection 1.5.4, we learned that the tangent function is periodic with a
period of π. To graph y = tan x, we focus on plotting the graph for one period
and then repeating those values to complete the graph.

We also know that the domain of tangent includes all real numbers except
angles of the form n π

2 , where n is an odd integer. These values are excluded
since tangent is undefined for these angles. In fact, any line of the form x = n π

2 ,
where n is an odd integer (e.g., x = π

2 and x = 3π
2 ), is a vertical asymptote.

Knowing the location of the vertical asymptotes, we choose the interval(
− π

2 , π
2

)
to plot our points for tangent. This interval has a length of π (one
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period), allowing us to repeat the values to complete the graph of tangent over
its entire domain.

Recall from Definition 1.3.2 that on the unit circle, the expression tan θ = y
x

denotes the ratio of the y-coordinate to the x-coordinate of a point P (x, y)
associated with an angle θ. This ratio changes as θ varies from zero to π

2 .
As θ approaches zero, the y-value tends to zero, and x approaches 1, resulting

in tan θ being a small fraction. Conversely, as θ approaches π
2 , the y-value

approaches 1, while x becomes extremely small and approaches zero. This
causes tan θ to be evaluated as a fraction with a very small number in the
denominator, producing a large number. A similar effect occurs when θ is
between − π

2 and zero, except tan θ is negative in this range. This behavior is
shown in Figure 2.2.9.

Standalone
Figure 2.2.9 As θ moves from −90◦ to 90◦, this figure plots the values of
y = tan θ. Move the slider for θ to see how changing the angle affects tan θ.
Note that while we will generally be using radians when graphing trigonometric
functions, this figure uses degrees to help visualize the angle. If you are viewing
the PDF or a printed copy, you can scan the QR code or follow the “Standalone”
link to explore the interactive version online.

Next we recall values of tangent for known angles, which are listed in
Table 2.2.10 and plotted in Figure 2.2.11.

Table 2.2.10 Values for y = tan x.

x tan x (x, y)
− π

3 −
√

3
(
− π

3 , −
√

3
)

− π
4 −1

(
− π

4 , −1
)

− π
6 − 1√

3

(
− π

6 , − 1√
3

)
0 0 (0, 0)
π
6

1√
3

(
π
6 , 1√

3

)
π
4 1

(
π
4 , 1

)
π
3

√
3

(
π
3 ,

√
3
)

https://www.kamuelayong.com/trigonometry/geogebra-tangent-animation.html
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− π
2 − π

3−
π
4−

π
6

π
6

π
4

π
3

π
2

−
√

3

−1
− 1√

3

1√
3

1

√
3 y = tan(x)

x

y

Figure 2.2.11 The values in Table 2.2.10 plotted with a smooth curve con-
necting the points to make the graph for y = tan(x).

Notice the symmetrical nature of the tangent function’s graph with respect
to the origin, a feature explained in Section 1.5.7, where we learned that tangent
is an odd function.

Since the graph in Figure 2.2.11 represents one period, we can complete
the graph of y = tan x by extending the pattern in both directions to obtain
Figure 2.2.12.
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−2π −π π 2π

−2

2

x = − 5π
2

x = − 3π
2

y = − π
2

y = π
2

y = 3π
2

y = 5π
2

x

y

Figure 2.2.12 The graph for y = tan(x).

2.2.6 The Cotangent Function
The domain of the cotangent function contains all angles except those of the
form nπ, where n is an integer. These excluded values correspond to vertical
asymptotes. In fact, any line of the form x = nπ, where n is an integer, serves
as a vertical asymptote. Additionally, as we learned in Subsection 1.5.4, the
cotangent function has a period of π. We can construct a plot for it in a
manner similar to how we constructed the tangent function, as illustrated in
Figure 2.2.13.

Standalone
Figure 2.2.13 As θ moves from 0◦ to 180◦, this figure plots the values of
y = cot θ. Move the slider for θ to see how changing the angle affects cot θ.
Note that while we will generally be using radians when graphing trigonometric
functions, this figure uses degrees to help visualize the angle. If you are viewing
the PDF or a printed copy, you can scan the QR code or follow the “Standalone”
link to explore the interactive version online.

Plotting points for y = cot x and using the fact that the cotangent function
is periodic, we obtain the graph for cotangent in Figure 2.2.14.

https://www.kamuelayong.com/trigonometry/geogebra-cotangent-animation.html
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− 3π
2

− π
2

π
2

3π
2

5π
2

−2

2

x = −2π

x = −π

x = 0

x = π

x = 2π

x = 3π

x

y

Figure 2.2.14 The graph for y = cot(x).
The symmetry of the cotangent function about the origin is evident, con-

firming its nature as an odd function, as explained in Section 1.5.7.

2.2.7 The Cosecant Function
The cosecant function has vertical asymptotes at points nπ, where n is an
integer, corresponding to the values where the function is undefined. These
points are the same ones excluded from the domain of csc x. As discussed in
Subsection 1.5.4, the cosecant function has a period of 2π. Given this, we
choose to examine its behavior within one period, specifically from 0 to 2π,
since this interval spans one complete period of the cosecant function.

Consider the Reciprocal Identity defining the cosecant function (Defini-
tion 1.4.2):

csc x = 1
sin x

.

As x approaches zero, sin x decreases to zero, making csc x approach positive
infinity. Increasing x towards π

2 , sin(x) increases to 1, and cosecant decreases
to 1. As x increases from π

2 to π, sin x approaches zero, causing csc(x) to
approach infinity.

Similarly, for x > π but nearing π, sin(x) becomes a small, negative number
near zero, resulting in csc(x) approaching negative infinity. As x increases to
3π
2 , sin(x) decreases to −1, and csc(x) increases to −1. Finally, as x increases

from 3π
2 to 2π, sin(x) approaches zero from the negative side, causing cosecant

to approach negative infinity. This behavior is shown in Figure 2.2.15.
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Standalone
Figure 2.2.15 As θ moves from 0◦ to 360◦, this figure plots the values of
y = sin θ and y = csc θ. Move the slider for θ to see how changing the angle
affects csc θ. Note that while we will generally be using radians when graphing
trigonometric functions, this figure uses degrees to help visualize the angle. If
you are viewing the PDF or a printed copy, you can scan the QR code or follow
the “Standalone” link to explore the interactive version online.

Next we recall values of sine and cosecant for known angles, which are listed
in Table 2.2.16 and plotted in Figure 2.2.17.

Table 2.2.16 Values for y = csc x.

x sin x csc x x sin x csc x

0 0 Undefined π 0 Undefined
π
6

1
2 2 7π

6 − 1
2 −2

π
4

1√
2

√
2 5π

4 − 1√
2 −

√
2

π
3

√
3

2
2√
3

4π
3 −

√
3

2 − 2√
3

π
2 1 1 3π

2 −1 −1
2π
3

√
3

2
2√
3

5π
3 −

√
3

2 − 2√
3

3π
4

1√
2

√
2 7π

4 − 1√
2 −

√
2

5π
6

1
2 2 11π

6 − 1
2 −2

2π 0 Undefined

https://www.kamuelayong.com/trigonometry/geogebra-cosecant-animation.html
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π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−4
−3
−2
−1

1
2
3
4

y = sin(x)

y = csc(x)

x = 0 x = π x = 2π

x

y

Figure 2.2.17 The values in Table 2.2.16 plotted with a smooth curve con-
necting the points to make the graph for y = csc(x).

Since the graph in Figure 2.2.17 represents one period, we can complete
the graph of y = csc x by extending the pattern in both directions to obtain
Figure 2.2.18.
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− 3π
2

− π
2

π
2

3π
2

5π
2

7π
2

−4

−2

2

4

y = sin(x)

y = csc(x)

x = −2π

x = −π

x = 0

x = π

x = 2π

x = 3π

x = 4π

x

y

Figure 2.2.18 The graph for y = sin(x) and y = csc(x).
Notice the graph of the cosecant function is symmetric with respect to the

origin, confirming what we learned in Section 1.5.7, that cosecant is an odd
function.

2.2.8 The Secant Function
As discussed earlier in this section, the secant function has a domain of all
real numbers except angles of the form n π

2 , where n is an odd integer. These
excluded values correspond to the vertical asymptotes of the secant function.
With a period of 2π, we can focus on the interval 0 to 2π. The construction of
the secant function graph follows a similar approach to the one used for the
cosecant function, as illustrated in Figure 2.2.19.

Standalone
Figure 2.2.19 As θ moves from 0◦ to 360◦, this figure plots the values of
y = cos θ and y = sec θ. Move the slider for θ to see how changing the angle
affects sec θ. Note that while we will generally be using radians when graphing
trigonometric functions, this figure uses degrees to help visualize the angle. If
you are viewing the PDF or a printed copy, you can scan the QR code or follow
the “Standalone” link to explore the interactive version online.

Plotting points for y = sec x and using the fact that the secant function is
periodic, we obtain the graph for secant in Figure 2.2.20.

https://www.kamuelayong.com/trigonometry/geogebra-secant-animation.html
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−2π −π π 2π 3π

−4

−2

2

4

y = cos(x)

y = sec(x)
x = − 5π

2

x = − 3π
2

y = − π
2

y = π
2

y = 3π
2

y = 5π
2

y = 5π
2

x

y

Figure 2.2.20 The graph for y = cos(x) and y = sec(x).
Notice the graph of the secant function is symmetric about the y-axis, and

thus secant is an even function, confirming what we learned in Section 1.5.7.

2.2.9 Graphing Transformations of Other Trigonometric
Functions

Similar to the graphs of sine and cosine, the graphs of the other trigonometric
functions can undergo vertical stretching and compressing, horizontal stretching
and compressing, phase shifts, vertical shift transformations, and reflections
about the x- and y-axes. However, unlike the sine and cosine functions, there
is no amplitude for the other trigonometric functions. These transformations
are listed in Definition 2.2.21.
Definition 2.2.21 Transformations of the Tangent, Cotangent, Cose-
cant, and Secant Functions. For functions of the form

y = A tan(B(x − C)) + D, y = A cot(B(x − C)) + D,

y = A csc(B(x − C)) + D, and y = A sec(B(x − C)) + D,

we can express the transformations as follows:

• Vertical Stretch/Compression: |A|

◦ |A| is the value of the vertical stretch/compression.
◦ If |A| > 1, there is vertical stretching.
◦ If 0 < |A| < 1, there is vertical compression.

• Period and Horizontal Stretch/Compression: |B|

◦ The period is π
|B| for tangent and cotangent, and 2π

|B| for cosecant
and secant.
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◦ If |B| > 1, there is horizontal compression, and the period is short-
ened.

◦ If 0 < |B| < 1, there is horizontal stretching, and the period is
lengthened.

• Phase Shift: C

◦ If C is positive, there is a shift to the right.
◦ If C is negative, there is a shift to the left.

• Vertical Shift: D

◦ If D is positive, there is a shift upward.
◦ If D is negative, there is a shift downward.

• Reflection about the x-axis:

◦ If A is negative (A < 0), there is a reflection about the x-axis.

• Reflection about the y-axis:

◦ If B is negative (B < 0), there is a reflection about the y-axis.

• Vertical Asymptotes:

◦ For cotangent and cosecant, vertical asymptotes occur at

x = C + n
π

|B|
,

where n is an integer.
◦ For tangent and secant, vertical asymptotes occur at

x = C + n
π

2|B|
,

where n is an odd integer.

♢

Remark 2.2.22 Other Forms of Transformations. For functions of the
form

y = A tan(Bx − E) + D, y = A cot(Bx − E) + D,
y = A csc(Bx − E) + D, and y = A sec(Bx − E) + D,

the transformations are the same as above, except for the phase shift and
vertical asymptotes where we replace C with E

B . If E
B > 0 the phase shift is to

the right, and if E
B < 0 it is to the left.

• For cotangent and cosecant, vertical asymptotes occur at

x = E

B
+ n

π

|B|
,

where n is an integer.

• For secant and tangent, vertical asymptotes occur at

x = E

B
+ n

π

2|B|
,



CHAPTER 2. GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 125

where n is an odd integer.

Example 2.2.23 Vertical Stretch/Compression and Reflection about
the x-axis. Graph one period for each function.

1. y = tan(x)

2. y = 2 tan(x)

3. y = 1
2 tan(x)

4. y = − tan(x)

Solution.

− π
4

π
4

−2

−1

1

2

y = tan(x)

y = 2 tan(x)

y = 1
2 tan(x)

y = − tan(x)

x = − π
2 x = π

2

x

y

Figure 2.2.24 The transformations of the tangent function graph, starting
with the graph of y = tan(x) along with graphs with a vertical stretch, a vertical
compression, and a reflection about the x-axis.

□

Example 2.2.25 Horizontal Stretch/Compression and Reflection
about the y-axis. Identify the period and graph one period for each of the
following functions:

1. y = cot(x)

2. y = cot(2x)

3. y = cot
(

1
2x

)
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4. y = cot(−x)

Solution.

1. The period for y = cot(x) is π.

2. The period for y = cot(2x) is π
|2| = π

2 .

3. The period for y = cot
( 1

2 x
)

is π

| 1
2 | = 2π.

4. The period for y = cot(−x) is π
|−1| = π.

−π − π
2

π
2

π 3π
2

2π

−2

2

y = cot(x)y = cot(2x)

y = cot
( 1

2 x
)

y = cot(−x)

x = −π

x = π
2

x = π

x = 2π

x

y

Figure 2.2.26 The transformations of the cotangent function graph, starting
with the graph of y = cot(x) along with graphs with a horizontal stretch, a
horizontal compression, and a reflection about the y-axis.

□

Example 2.2.27 Phase Shifts and Vertical Shifts. Graph the function
y = csc

(
x − π

2
)

+ 2.
Solution.
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− 3π
2

− π
2

π
2

3π
2

−4

−2

2

4

6

y = sin(x)

y = csc(x)

y = sin
(
x − π

2
)

+ 2

y = csc
(
x − π

2
)

+ 2

x

y

Figure 2.2.28 The graphs of y = csc
(
x − π

2
)

+ 2 and y = sin
(
x − π

2
)

+ 2 are
derived from the graphs of y = csc(x) and y = sin(x) by applying a phase shift
of π

2 to the right and a vertical shift up by 2.

□
Explore the effects of various transformations using the interactive features

in Figure 2.2.29 and Figure 2.2.30.

Standalone
Figure 2.2.29 Manipulate the graphs of tangent and cotangent by adjusting
the sliders for A, B, C, and D. Observe the effects on period, phase and
vertical shifts, as well as reflections about the x- and y-axes. Additionally,
toggle between the tangent and cotangent graphs by selecting the corresponding
function. If you are viewing the PDF or a printed copy, you can scan the QR
code or follow the “Standalone” link to explore the interactive version online.

https://www.kamuelayong.com/trigonometry/geogebra-tangent-cotangent-transformation-animation.html
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Standalone
Figure 2.2.30 Manipulate the graphs of cosecant and secant by adjusting
the sliders for A, B, C, and D. Observe the effects on period, phase and
vertical shifts, as well as reflections about the x- and y-axes. Additionally,
toggle between the cosecant and secant graphs by selecting the corresponding
function. If you are viewing the PDF or a printed copy, you can scan the QR
code or follow the “Standalone” link to explore the interactive version online.

2.2.10 Exercises

Exercise Group. Graph the function.
1. y = sec(x) − 4

Answer.

−2π −π π 2π

−10

−5

5

10

x

y

2. y = cot(x) − 1
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

3. y = csc(x) + 3
Answer.

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−10

−5

5

10

x

y

4. y = tan(x) + 2
Answer.

− 3π
2

−π − π
2

π
2

π 3π
2

−10

−5

5

10

x

y

https://www.kamuelayong.com/trigonometry/geogebra-cosecant-secant-transformation-animation.html
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5. y = 1
2 tan(x)

Answer.

− 3π
2

−π − π
2

π
2

π 3π
2

−10

−5

5

10

x

y

6. y = −3 csc(x)
Answer.

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−10

−5

5

10

x

y

7. y = 2 cot(x)
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

8. y = 4 sec(x)
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

9. y = − 1
2 tan(2x) + 2

Answer.

−π − π
2

π
2

π

−10

−5

5

10

x

y

10. y = 2 csc(3x) + 3
Answer.

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−10

−5

5

10

x

y

11. y = 3 cot
( 1

2 x
)

− 1
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

12. y = −3 sec(2x) − 4
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

Exercise Group. For each function, determine the period and sketch the
graph.
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13. y = cot
( 1

2 x
)

Answer. Period: 2π

−2π −π π 2π

−10

−5

5

10

x

y

14. y = tan
(

π
3 x

)
Answer. Period: 3

−4 −2 2 4

−10

−5

5

10

x

y

15. y = sec
(

π
4 x

)
Answer. Period: 8

−6 −4 −2 2 4 6

−10

−5

5

10

x

y

16. y = csc
(

π
6 x

)
Answer. Period: 12

−6 −3 3 6

−10

−5

5

10

x

y

17. y = tan(2x)
Answer. Period: π

2

−π − π
2

π
2

π

−10

−5

5

10

x

y

18. y = sec
(

π
2 x

)
Answer. Period: 4

−6 −4 −2 2 4 6

−10

−5

5

10

x

y

19. y = csc
( 1

4 x
)

Answer. Period: 8π

−8π −6π −4π −2π 2π 4π 6π 8π

−10

−5

5

10

x

y

20. y = cot
(

π
6 x

)
Answer. Period: 6

−6 −3 3 6

−10

−5

5

10

x

y

Exercise Group. Match each given function to one of the graphs below.
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−2π −π π 2π 3π

−10

−5

5

10(A)

x

y

−2π −π π 2π

−2

2

(B)

x

y

−2π −π π 2π

−10

−5

5

10(C)

x

y

−2π −π π 2π

−10

−5

5

10(D)

x

y

−π π 2π

−10

−5

5

10(E)

x

y

−2π −π π 2π

−10

−5

5

10(F)

x

y

21. y = csc(2x) + 4
Answer. C

22. y = 2 tan
(
x − π

4
)

Answer. A
23. y = 3 cot

(
x − π

2
)

Answer. E
24. y = − 1

3 cot(x)
Answer. B

25. y = −2 csc(2x)
Answer. F

26. y = sec
(
x + π

3
)

− 2
Answer. D

Exercise Group. Find the period, phase shift, and vertical shift of each
function and sketch the graph.
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27. y = 2 tan(x) + 3
Answer. Period: π; Phase
Shift: 0; Vertical Shift: 3

−2π −π π 2π

−10

−5

5

10

x

y

28. y = 1
2 cot

( 1
2 x

)
+ 1

Answer. Period: 2π; Phase
Shift: 0; Vertical Shift: 1

−2π −π π 2π

−10

−5

5

10

x

y

29. y = − csc
(
x + π

4
)

Answer. Period: 2π; Phase
Shift: − π

4 ; Vertical Shift: 0

−2π −π π 2π

−10

−5

5

10

x

y

30. y = − 1
3 sec(2x)

Answer. Period: π; Phase
Shift: 0; Vertical Shift: 0

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−10

−5

5

10

x

y

31. y = 2 sec
(

π
2 x

)
+ 4

Answer. Period: 4; Phase
Shift: 0; Vertical Shift: 4

−6 −4 −2 2 4 6

−10

−5

5

10

x

y

32. y = cot
(
x − π

3
)

+ 2
Answer. Period: π; Phase
Shift: π

3 ; Vertical Shift: 2

− 5π
3 − 2π

3
π
3

4π
3

−10

−5

5

10

x

y

33. y = tan
(
x − π

6
)

+ 1
Answer. Period: π; Phase
Shift: π

6 ; Vertical Shift: 1

− 4π
3

− π
3

2π
3

5π
3

−10

−5

5

10

x

y

34. y = − 1
4 sec(x)

Answer. Period: 2π; Phase
Shift: 0; Vertical Shift: 0

−2π −π π 2π

−10

−5

5

10

x

y
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35. y = 3 csc
(
x + π

2
)

Answer. Period: 2π; Phase
Shift: − π

2 ; Vertical Shift: 0

−2π −π π 2π

−10

−5

5

10

x

y

36. y = − tan
(
2

(
x − π

4
))

+ 2
Answer. Period: π

2 ; Phase
Shift: π

4 ; Vertical Shift: 2

−2π −π π 2π

−10

−5

5

10

x

y

Navigating with Shadows. When navigating the open ocean, maintaining
a straight course poses challenges due to limited visual markers. One technique
involves the steersperson using the positions of shadows cast by objects on the
canoe—such as crew members, railings, and sails—to keep them fixed on the
deck, ensuring a straight trajectory. However, if the canoe veers off course, the
changing position of the canoe relative to the sun leads to a shift in the shadows.
Observing these shadow movements allows the steersperson to make course
corrections. It’s important to note that this method is effective only over a
short duration, as the sun’s continuous movement across the sky causes ongoing
changes in shadow positions. To illustrate the limitations over extended periods,
consider the example of the Samoan double-hulled voyaging va‘a, Gaualofa,
with a 14-meter-high mast. The length of the shadow is modeled by

l(t) = 14
∣∣∣cot

( π

12 t
)∣∣∣ ,

where l is the shadow length in meters and t represents the hours since 6
am (assuming sunrise at 6 am and sunset at 6 pm). In each of the following
questions, calculate the length of the shadow, rounded to the nearest tenth of a
meter, for the given time.

37. 7:00am
Answer. 52.2 meters

38. 10:00am
Answer. 8.1 meters

39. 12:00pm
Answer. 0 meters

40. 3:00pm
Answer. 14 meters

41. 4:00pm
Answer. 24.2 meters

42. Graph the length of the
shadow, l, throughout the day
from 6:00am to 6:00pm
(0 < t < 12)
Answer.

2 4 6 8 10 12

20

40

60

t

l

Exercise Group.



CHAPTER 2. GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 134

Rangiroa

d

N
or

th
→

θ

An observer on Rangiroa spots the Fa‘afaite, a double-hulled voyaging canoe
from Tahiti, sailing off the north coast of the atoll, maintaining a distance of
1.5 kilometers from the shore and traveling east. Let θ represent the angle
formed between the line from the observer to the va‘a and a line extending due
north from the observer, measured in radians. The angle θ is negative if the
va‘a is to the left of the observer and positive when to the right, as shown in
the figure above. The distance (in kilometers), denoted by d(θ) from Fa‘afaite
to the observer is given by the function

d(θ) = 1.5 sec(θ).

In each of the following questions, calculate the distance from the observer
to Fa‘afaite, d(θ), in kilometers, for the given angle θ. Round your answer to
two decimal places.

43. θ = − π
3

Answer. 3.00 km
44. θ = − π

4
Answer. 2.12 km

45. θ = − π
6

Answer. 1.73 km
46. θ = 0

Answer. 1.50 km
47. θ = π

6
Answer. 1.73 km

48. θ = π
4

Answer. 2.12 km
49. θ = π

3
Answer. 3.00 km

50. Graph the function d(θ) on
the domain − π

3 ≤ θ ≤ π
3 .

Answer.

− π
3 − π

4 − π
6

π
6

π
4

π
3

1

2

3

4

d(x) = 1.5 sec(x)

θ

d

51. What happens to d as θ
approaches π

2 ?
Answer. As θ approaches π

2 ,
the function d(θ) = 1.5 sec(θ)
approaches positive infinity.

52. What is the closest distance
Fa‘afaite comes to shore?
Where does this occur?
Answer. 1.5 km, when
Fa‘afaite is directly north of
the observer (θ = 0).
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2.3 Sinusoidal Curve Fitting and Graphical Anal-
ysis

In this chapter, we learn that sinusoidal patterns exist in various aspects
throughout our world. One example is the moon, which undergoes phases
oscillating from no illumination, to waxing (increasing illumination), reaching
a fully lit moon, and then waning (decreasing illumination) until it completes
its cycle with no illumination again. Indigenous cultures across the world have
deeply connected with these lunar cycles, shaping cultural practices aligned
with the moon’s phases. For example, the Māori of New Zealand and the Hopi
Tribe in northeastern Arizona, USA, both time activities such as planting and
harvesting specific plants for each moon cycle based on generations of lunar
observations.

In Section 2.1, we graphed sinusoidal functions and determined their values
for any given input value. The ability to formulate a sinusoidal equation
modeling the moon’s phases allows us to predict the moon’s phase on any
date. In this section, we will explore the process of developing sinusoidal
functions based on provided information. This will enable us to model real-
world phenomena using real data.

2.3.1 Finding Sinusoidal Equations from Characteristics
To begin finding sinusoidal equations of the form

y = A sin(B(x − C)) + D and y = A cos(B(x − C)) + D

we will use the characteristics of sine and cosine functions, as described in
Remark 2.1.37 and summarized below, to determine the values of A, B, C, and
D.

• Amplitude and Vertical Stretch/Compression: |A|

◦ |A| is the value of the amplitude.
◦ If |A| > 1, there is vertical stretching.
◦ If 0 < |A| < 1, there is vertical compression.

• Period and Horizontal Stretch/Compression: |B|

◦ The period is 2π
|B| .

◦ If |B| > 1, there is horizontal compression and the period is short-
ened.

◦ If 0 < |B| < 1, there is horizontal stretching and the period is
lengthened.

• Phase Shift: C

◦ If C is positive, there is a shift to the right.
◦ If C is negative, there is a shift to the left.

• Vertical Shift: D

◦ If D is positive, there is a shift upward.
◦ If D is negative, there is a shift downward.
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• Reflection about the x-axis:

◦ If A is negative (A < 0), there is a reflection about the x-axis.

• Reflection about the y-axis:

◦ If B is negative (B < 0), there is a reflection about the y-axis.

Example 2.3.1 Finding an Equation of a Sine Function Using its
Characteristics. Write an equation of a sine function with an amplitude of 2,
period of 8, phase shift of π

3 , and vertical shift of 4.
Solution. To determine an equation of the form

f(x) = A sin(B(x − C)) + D

we first examine the information that we are given: amplitude of 2, period of 8,
phase shift of π

3 , and vertical shift of 4.
Since |A| represents the value of the amplitude, we get

|A| = 2.

Thus we either have A = 2 or A = −2. Since we are not given a reflection
about the x-axis, we can conclude that A is not negative, thus

A = 2.

Next, since the period of a sine function is given by 2π
|B| , we get

2π

|B|
= 8.

Solving for |B|, we get
|B| = 2π

8 = π

4 .

Since there is no reflection about the y-axis, we have that B must be positive:

B = π

4 .

Finally, since C and D represent the phase shift and vertical shift, respec-
tively, we get

C = π

3 , D = 4.

Combining these, the sine function becomes:

f(x) = 2 sin
(π

4

(
x − π

3

))
+ 4.

□

2.3.2 Finding Sinusoidal Equations from Graphs
Sometimes we are not explicitly given the characteristics of the function, but
are provided with the graph. Examining a graph can reveal its characteristics,
allowing us to find the equation of a function.

In this next example, we’ll explore how to find an equation of a cosine
function based on the graph of a sine function.
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Example 2.3.2 Finding an Equation of a Cosine Function Using the
Graph of a Sine Function. Below is the graph of y = sin(x).

π
2

π 3π
2

2π 5π
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3π 7π
2

4π
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0.5

1

x

y

Find an equation of the form y = A cos(B(x − C)) + D that fits the graph.
Solution. The cosine function has its maximum when x = 0, decreases to
its minimum at x = π, and then increases before completing one period at 2π.
This graph starts at 0 when x = 0, then increases to its maximum at x = π

2 ,
and then has the shape of the cosine function starting at x = 0. This represents
a phase shift to the right. There no reflections about the x-axis or y-axis. We
will find the equation of a function with characteristics of a phase shift to the
right.

Amplitude (A): Since the amplitude of the cosine function will be the same
as the amplitude of the sine function, which is 1, we have |A| = 1. Since there
is no reflection about the x-axis, we choose the positive value to get A = 1.

Vertical Shift (D): The vertical shift of the cosine function will be the same
as that of the sine function, which is 0. So, we have D = 0.

Period (B): The period of the cosine function will also be the same as the
period of the sine function, which is 2π. Since 2π = 2π

|B| , we have |B| = 1. Since
there is no reflection about the y-axis, we get B = 1.

Therefore, we have

y = 1 cos(1x) + 0 = cos(x).

Overlapping the graph of y = cos(x) onto the original graph will help us
determine the phase shift.
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Phase Shift (C): From the graph, the cosine function will have a phase
shift of π

2 radians to the right to match the graph of the sine function. This is
because the cosine function reaches its maximum value at x = 0, while the sine
function reaches its maximum at x = π

2 . So, we have C = π
2 .

Therefore, the equation of the cosine function that fits the graph of y = sin(x)
is:

y = cos
(

x − π

2

)
□

Remark 2.3.3 Since this graph is the graph of y = sin(x), we get

sin(x) = cos
(

x − π

2

)
.

This solution demonstrates that any sine function can be written as a cosine
function with an appropriate phase shift. In this case, the phase shift of π

2
radians to the right transforms the cosine function into its corresponding sine
function.
Example 2.3.4 Finding an Equation of a Sine Function Using its
Graphs. Given the graph below, find an equation that represents the graph in
the following forms:
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(a)
f(x) = A sin(B(x − C)) + D.

Solution. The sine function starts at the origin, increases to its maxi-
mum when x = π

2 , decreases to its minimum at x = 3π
2 , and then increases

again before completing one period at 2π. In the given graph, the function
has a value of 8 when x = 0, then increases to its maximum value of 16 at
x = 10, decreases to its minimum value of 0 at x = 30, and then increases
again before completing one period at x = 40. This indicates a vertical
shift, a vertical stretch, and a horizontal stretch of the period. There are
no reflections about the x-axis or y-axis. Therefore, we need to find the
equation of a function with these characteristics."
Amplitude (A): Recall from Definition 2.1.23 that the amplitude is defined
as half of the difference between the maximum and minimum values of
the function. Here, the maximum value is 16 and the minimum value is 0,
so the amplitude is:

|A| = 16 − 0
2 = 8.

Since there are no reflections about the x-axis, we use the positive value
to get A = 8.
Vertical Shift (D): The midline, calculated as

y = maximum + minimum
2 = 16 + 0

2 = 8,

represents the vertical shift of the graph. Therefore,

D = 8.
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Period (B): The period of a function is the length of one full repetition
(or cycle). We can identify the period on the graph by measuring the hor-
izontal distance between corresponding points where the graph completes
a cycle. In this case, we’ll use two corresponding peaks at x = 10 and
x = 50 to obtain:

period = 50 − 10 = 40.

Note that other points on the graph, such as the minimum values or
the points where the graph crosses the midline, could also be used to
determine the period.
Since Definition 2.1.27 defines a period as 2π

|B| , we have:

40 = 2π

|B|
.

Thus,
|B| = 2π

40 = π

20 .

Since there are no reflections about the y-axis, we get B = π
20 .

Phase Shift (C): The phase shift of the graph refers to its horizontal
translation. The cycle of a sine function typically starts at x = 0 on the
midline, increases to the maximum, decreases, passes the midline to the
minimum, and then completes a cycle back at the midline. Since this
graph follows these characteristics without any horizontal translation,
there is no phase shift. Therefore, C = 0.
Thus, the graph can be described by the following sine function:

f(x) = 8 sin
( π

20x
)

+ 8.

(b)
g(x) = A cos(B(x − C)) + D.

Solution. Since the cosine function has its maximum value when x = 0
before decreasing to its minimum and then increasing to complete one
period, the graph provides several options for phase shifts. By selecting a
peak and determining the direction and value of the phase shift needed
for the cosine function to reach that peak, we can align it with the given
graph. For example, if we choose the peak at x = −30, the cosine function
will shift 30 units to the left. Similarly, for peaks at x = 10 or x = 50,
the cosine function would need to shift 10 or 50 units, respectively, to the
right. Since the peak at x = 10 is the closest to the peak of the original
cosine function when x = 0, we opt for this phase shift. Additionally, as
the graph of the sine function, there is a vertical shift, a vertical stretch,
and a horizontal stretch, with no reflections about the y-axis or the x-axis.
Amplitude (A): The amplitude of a cosine function is the same as that
of the corresponding sine function. Thus, |A| = 8. Since there are no
reflections about the x-axis, we use the positive value to get A = 8.
Vertical Shift (D): The vertical shift of a cosine function is the same as
that of the corresponding sine function. Thus, D = 8.
Period (B): The period of a cosine function is also the same as that of
the corresponding sine function. In this case, |B| = π

20 . Since there are
no reflections about the y-axis, we determine B = π

20 .
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Before we examine the phase shift, let’s summarize what we found so far:

g(x) = 8 cos
( π

20 (x)
)

+ 8

and overlap this graph with the given graph.

−40 −20 20 40 60 80
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y = 8 sin

(
π
20 (x)

)
+ 8 y = 8 cos

(
π
20 (x)

)
+ 8

x

y

Phase Shift (C): From the graph, we see that the starting point of the
cosine function’s cycle is at its maximum value, unlike the starting point
of a sine function’s cycle, which is at its midline. In this case, the graph
has a horizontal shift to the right of 10 units. Thus, C = 10.
We can now describe the graph with the following cosine function:

g(x) = 8 cos
( π

20 (x − 10)
)

+ 8.

□

2.3.3 Finding Sinusoidal Equations from Data
Example 2.3.5 Modeling the Daylight Hours in Munda. In Section 2.1
we learned that Earth’s axis is tilted, and as the Earth orbits the sun, this axial
tilt causes seasons, which are periodic. Another effect of the axial tilt and orbit
is the amount of daylight each part of Earth experiences, which is also periodic.

The total sunlight duration in Munda, on the island of New Georgia in the
Solomon Islands in 2025, is plotted in Figure 2.3.6. On the 21st of June 2025
(the 172nd day of the year), which is the shortest day of the year in Munda, the
total sunlight duration is 11 hours, 38 minutes, and 17 seconds (approximately
11.64 hours). Conversely, on the 22nd of December 2025 (the 356th day of the
year), which is the longest day of the year, the total sunlight duration is 12
hours, 36 minutes, and 44 seconds (approximately 12.61 hours). Find a function
of the form y = A cos(B(x − C)) + D to model the total hours of daylight in
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Munda in 2025, assuming that one period represents one year or 365 days.
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hours

Figure 2.3.6 Hours of daylight in Munda, Solomon Islands. Source: NOAA
Solar Calculator.
Solution. Amplitude (A): From the definition of amplitude (Definition 2.1.23),

|A| = maximum − minimum
2 = 12.61 − 11.64

2 = 0.485.

Assuming no reflections about the x-axis, we have:

A = 0.485.

Period (B): We assume a period of one year or 365 days. Additionally, we
can assume no reflections about the y-axis, leading to a positive value for B.
Thus we have 2π

B = 365 or

B = 2π

365 ≈ 0.0172.

Phase Shift (C): The characteristic of a cosine function is that at x = 0, the
function is at its maximum value. However, in this case, the maximum value
occurs on Day 356. This represents a phase shift to the right by 356 days, thus:

C = 356.

Vertical Shift (D): The value of the midline represents the average duration
of daylight, which is the vertical shift:

D = maximum + minimum
2 = 12.61 + 11.64

2 = 12.125.

Therefore, the equation of our function is

y = 0.485 cos(0.0172(x − 356)) + 12.125.

□
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Remark 2.3.7 It’s important to note that the average duration of daylight is
not exactly 12 hours but instead approximately 12.125 hours. This discrepancy
arises due to atmospheric refractions, which cause the apparent sunrise and
sunset to occur slightly before and after, respectively, the sun crosses the
horizon—the actual sunrise and sunset times.
Example 2.3.8 Modeling the Temperature in Christchurch. Another
effect of axial tilt besides daylight hours is temperature, which is also periodic.
The average monthly temperature for Christchurch, New Zealand is given in
Table 2.3.9 (Source: National Institute of Water and Atmospheric Research
(NIWA). Retrieved 18 March 2024). Find a sinusoidal function of the form y =
A cos(B(x−C))+D to model the average monthly temperature of Christchurch.

Table 2.3.9 The average monthly temperature for Christchurch, New
Zealand.

Month, x Temperature (◦C)
January, 1 17.5
February, 2 17.2
March, 3 15.5
April, 4 12.7
May, 5 9.8
June, 6 7.1
July, 7 6.6

August, 8 7.9
September, 9 10.3
October, 10 12.2

November, 11 14.1
December, 12 16.1

Solution. We begin by plotting the points in Table 2.3.9.
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Examining the plot of the data points, we see this looks like the graph of a
cosine function with no reflections about the x-axis or the y-axis.

Amplitude (A): The amplitude is

|A| = maximum − minimum
2 = 17.5 − 6.6

2 = 5.45.

Since there are no reflections about the x-axis, we get A = 5.45
Period (B): Since the temperatures repeat every 12 months, the period is

12 and so 2π
|B| = 12. Since there are no reflections about the y-axis, we keep the

positive value to obtain
B = 2π

12 = π

6 .

Vertical Shift (D): The vertical shift is the average of the maximum and
minimum values of the data, which corresponds to the midline of the graph:

D = maximum + minimum
2 = 17.5 + 6.6

2 = 12.05.

Phase Shift (C): The maximum temperature in the data occurs in January
(x = 1). However, since the graph of cosine reaches its maximum value at x = 0,
we have a phase shift of 1 to the right to align the peak with the maximum
temperature data point. Thus, C = 1.

Our function now becomes

y = 5.45 cos
(π

6 (x − 1)
)

+ 12.05.

Finally, we plot our function and the data together.
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□

Remark 2.3.10 Steps for Deriving Sinusoidal Models from Data.

1. Graph the data points.
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2. Determine the characteristics of the data, including vertical and horizontal
stretching, phase shifts, vertical shifts, and reflections about the x-axis or
the y-axis.

3. Amplitude: Calculate the amplitude using the formula

|A| = maximum − minimum
2 .

Use the positive value if there is no reflection about the x-axis, and use
the negative value if there is a reflection.

4. Vertical Shift (D): The vertical shift is the average of the maximum and
minimum values of the data, which corresponds to the midline of the
graph. We can calculate the vertical shift using the formula:

D = maximum + minimum
2 .

5. Period: Calculate the period from the data, then find

|B| = 2π

period .

Use the positive value if there is no reflection about the y-axis, and use
the negative value if there is a reflection.

6. Phase Shift: Determine the phase shift, C, by calculating the distance
between points from the data and their corresponding points on the sine
or cosine function, such as the maximum, minimum, or values on the
midline.

2.3.4 Finding Sinusoidal Equations with Technology
Some graphing utilities, such as the TI-83 calculator or Desmos Graphing
Calculator1, have functions that allow us to find a sinusoidal best-fit function
given data. While some devices can find the best-fit for both sine and cosine
functions, others calculate the best-fit line only for sine. For example, the TI-83
uses the SinReg function to calculate the sine function.

Example 2.3.11 Finding the Sinusoidal Equation using Desmos. Utilize
a graphing utility to determine the best-fit cosine function for the data provided
in Table 2.3.9.
Solution.

1. Open a new table in the Desmos Graphing Calculator by either typing
“table” in a blank expression line or by clicking the Add Item menu in the
upper left corner and selecting Table.

2. Enter the values from Table 2.3.9 into the table, where x1 represents the
month and y1 represents the temperature.

3. Use the Zoom Fit icon (a magnifying glass with a + symbol) at the
bottom left corner of the table to automatically adjust the graph settings
window to best display the data.

4. In a blank expression line, type “y1 ∼ A cos(B(x1 − C)) + D” to fit a
cosine function to the data.

1DesmosGraphingCalculator

https://www.desmos.com/calculator
https://www.desmos.com/calculator
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5. The parameters for the best-fit function will be returned: A = 5.21412,
B = 0.534145, C = 1.19926, D = 12.1509. Thus, the best-fit cosine
function is:

y = 5.21412 cos(0.534145(x − 1.19926)) + 12.1509.

Figure 2.3.12 displays an interactive Desmos Graphing Calculator with the
completed table and the curve of best fit plotted together.

Standalone

Figure 2.3.12 Given data points in a table, Desmos can create a sinusoidal
function to model the data. If you are viewing the PDF or a printed copy, you
can scan the QR code or follow the “Standalone” link to explore the interactive
version online.

□

2.3.5 Exercises

Exercise Group. Write the equation of a sine function with the following
characteristics:

1. Amplitude: 2; Period: π.
Answer. y = 2 sin (2x)

2. Amplitude: 3; Period: π
2 .

Answer. y = 3 sin (4x)
3. Amplitude: 1.5; Period: π

6 ;
Reflection about the x-axis.
Answer. y = −1.5 sin (12x)

4. Amplitude: 2; Period: 3π;
Reflection about the x-axis.
Answer. y = −2 sin

( 2
3 x

)
5. Amplitude: 4; Period: 2π

3 ;
Vertical Shift 2.
Answer. y = 4 sin (3x) + 2

6. Amplitude: 3; Period: 5
2 ;

Vertical Shift: − 2
3 .

Answer. y = 3 sin
( 4π

5 x
)

− 2
3

7. Amplitude: 1
2 ; Period: 2π;

Phase Shift: π
4 .

Answer. y = 1
2 sin

(
x − π

4
)

8. Amplitude: 1; Period: 5π
3 ;

Phase Shift: π
6 .

Answer. y =
sin

( 6
5

(
x − π

6
))

https://www.kamuelayong.com/trigonometry/desmos-christchurch-temp.html
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9. Amplitude: 2, Period: 3π
2 ;

Phase Shift: π
3 ; Vertical Shift:

−1.
Answer. y =
2 sin

( 4
3

(
x − π

3
))

− 1

10. Amplitude: 2, Period: 20;
Phase Shift: − π

4 ; Vertical
Shift: 3.
Answer. y =
2 sin

(
π
10

(
x + π

4
))

+ 3

Exercise Group. Write the equation of a cosine function with the following
characteristics:

11. Amplitude: 1.8; Period: 2π.
Answer. y = 1.8 cos (x)

12. Amplitude: 2.5; Period: π
4 .

Answer. y = 2.5 cos (8x)
13. Amplitude: 2; Period: 7π

4 ;
Reflection in the x-axis.
Answer. y = −2 cos

( 8
7 x

)
14. Amplitude: 1.5; Period: 4π

5 ;
Reflection in the x-axis.
Answer. y = −1.5 cos

( 5
2 x

)
15. Amplitude: 4; Period: 5π

3 ;
Vertical Shift: -3.
Answer. y = 4 cos

( 6
5 x

)
− 3

16. Amplitude: 3.5; Period: 4π
3 ;

Vertical Shift: 2.
Answer. y = 3.5 cos

( 3
2 x

)
+2

17. Amplitude: 3; Period: 3π
2 ;

Phase Shift: π
6 .

Answer. y =
3 cos

( 4
3

(
x − π

6
))

18. Amplitude: 2.5; Period: π
3 ;

Phase Shift: π
4 .

Answer. y =
2.5 cos

(
6

(
x − π

4
))

19. Amplitude: 2; Period: 3π;
Phase Shift: − π

2 ; Vertical
Shift: 2.
Answer. y =
2 cos

( 2
3

(
x + π

2
))

+ 2

20. Amplitude: 1.2; Period: 5π
2 ;

Phase Shift: − π
3 ; Vertical

Shift: 3.
Answer. y =
1.2 cos

( 4
5

(
x + π

3
))

+ 3

Exercise Group. For each given graph, identify the amplitude, period, phase
shift, and vertical shift, and write an equation of the form y = A sin(B(x −
C)) + D that represents these characteristics.

21.
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Answer. Amplitude: A = 4;
Period: 8; Phase Shift: C = 0;
Vertical Shift: D = 0;
y = 4 sin

(
π
4 x

)

22.

−π − π
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π
2

π 3π
2

2π
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4
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y

Answer. Amplitude: A = 3;
Period: π; Phase Shift: C = 0;
Vertical Shift: D = 1;
y = 3 sin(2x) + 1
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23.
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Answer. Amplitude:
A = 1.5; Period: π; Phase
Shift: C = π

2 ; Vertical Shift:
D = −1;
y = 1.5 sin

(
2

(
x − π

2
))

− 1

24.
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Answer. Amplitude: A = 4;
Period: 12; Phase Shift:
C = 3; Vertical Shift: D = 2;
y = 4 sin

(
π
6 (x − 3)

)
+ 2

Exercise Group. For each given graph, identify the amplitude, period, phase
shift, and vertical shift. Write an equation that represents these characteristics
of the form y = A cos(B(x − C)) + D.

25.
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Answer. Amplitude: A = 2;
Period: 2π

3 ; Phase Shift:
C = 0; Vertical Shift: D = 1;
y = 2 cos(3x) + 1

26.
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Answer. Amplitude: A = 5;
Period: 12; Phase Shift:
C = 2; Vertical Shift: D = 0;
y = 5 cos

(
π
6 (x − 2)

)
27.

π 2π 3π 4π 5π 6π

−6

−4

−2

xy

Answer. Amplitude: A = 2;
Period: 4π; Phase Shift:
C = π; Vertical Shift:
D = −4;
y = 2 cos

( 1
2 (x − π)

)
− 4

28.

2π 4π 6π 8π 10π

−2

2

4

6

x

y

Answer. Amplitude: A = 4;
Period: 8π; Phase Shift:
C = 2π; Vertical Shift: D = 2;
y = 4 cos

( 1
4 (x − 2π)

)
+ 2

Hours of daylight. For each of the following questions, the number of daylight
hours for a pair of islands in 2025 is given. These islands share the same latitude
or are close to it, with one island located north of the equator and the other
south of it. Find a sinusoidal function of the form y = A cos(B(x − C)) + D to
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model the daylight hours for each island. This data is sourced from the NOAA
Solar Calculator.

29. Pohnpei, situated at 6.9° North latitude in the Federated States of
Micronesia, experiences its longest day, lasting 12.52 hours, on 21 June
2025 (the 172nd day of the year), and its shortest day, lasting 11.72
hours, on 22 December 2025 (the 356th day of the year).

Nanumanga, located at 6.3° South latitude in Tuvalu, experiences
its longest day, lasting 12.49 hours, on 22 December 2025 (the 356th
day of the year), and its shortest day, lasting 11.76 hours, on 21 June
2025 (the 172nd day of the year).

Jan Mar May Jul Sep Nov
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13.5

Pohnpei

Nanumanga

month

hours

Answer. Pohnpei: y = 0.4 cos(0.0172(x − 172)) + 12.12; Nanumanga:
y = 0.365 cos(0.0172(x − 356)) + 12.125

30. Saipan, positioned at 15.2° North latitude in the Northern Mariana
Islands, has its longest day, lasting 13.03 hours, on 21 June 2025 (the
172nd day of the year), and its shortest day, lasting 11.23 hours, on 22
December 2025 (the 356th day of the year).

Espiritu Santo, located at 15.4° South latitude in Vanuatu, experi-
ences its longest day, lasting 13.04 hours, on 22 December 2025 (the
356th day of the year), and its shortest day, lasting 11.21 hours, on 21
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June 2025 (the 172nd day of the year).
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Answer. Saipan: y = 0.9 cos(0.0172(x−172))+12.13; Espiritu Santo:
y = 0.915 cos(0.0172(x − 356)) + 12.125

31. Kaua‘i, situated at 22.1° North latitude in Hawai‘i, has its longest
day, lasting 13.48 hours, on 20 June 2025 (the 171st day of the year),
and its shortest day, lasting 10.78 hours, on 21 December 2025 (the
355th day of the year).

Mangaia, located at 21.9° South latitude in the Cook Islands,
experiences its longest day, lasting 13.47 hours, on 21 December 2025
(the 355th day of the year), and its shortest day, lasting 10.79 hours,
on 20 June 2025 (the 171st day of the year).

It’s noteworthy that Kaua‘i and Mangaia are situated east of
the International Date Line, causing them to experience the winter
and summer solstice one day earlier than islands located west of the
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International Date Line.
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Answer. Kaua‘i: y = 1.35 cos(0.0172(x − 171)) + 12.13; Mangaia:
y = 1.34 cos(0.0172(x − 355)) + 12.13

32. What patterns do you observe when comparing the graphs of daylight
hours for pairs of islands across different latitudes? Additionally, how
does the variation in daylight hours change with increasing latitude,
that is, as one moves away from the equator?
Answer. The islands exhibit mirrored patterns in daylight hours,
where one island experiences longer days while the other experiences
shorter days. This is due to their opposite positions relative to the
equator.

As latitude increases (moving away from the equator), the variation
in daylight hours also increases. Islands closer to the equator experience
less variation in daylight hours throughout the year, while islands
further away from the equator experience more changes in daylight
hours between seasons.

Exercise Group. The islands of O‘ahu and Rarotonga are located at similar
distances from the equator. However, they experience different climates due
to their locations relative to the equator. O‘ahu is at 21.26° North, directly
mirrored by Rarotonga at 21.26° South. The table below gives the average
monthly temperatures (in °C) for each island. Use the data in the table to
answer the following questions. Source: http://www.worldclimate.com, retrieved
on 18 March, 2024.

http://www.worldclimate.com
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Month (x) O‘ahu (21.3° N) Rarotonga (21.2° S)
January (1) 22.7 25.7
February (2) 22.7 26.1

March (3) 23.5 25.8
April (4) 24.3 24.9
May (5) 25.2 23.5
June (6) 26.3 22.3
July (7) 26.9 21.7

August (8) 27.4 21.6
September (9) 27.2 22.1
October (10) 26.4 22.9

November (11) 25.1 23.8
December (12) 23.3 24.8

33. Determine a sinusoidal function of the form y = A sin(B(x − C)) + D
to represent the average monthly temperatures provided in the table
for each island.
Answer. O‘ahu: y = 2.35 sin(0.5236(x − 5)) + 25.05; Rarotonga:
y = 2.25 sin(0.5236(x − 11)) + 23.85

34. Utilize a graphing utility to identify the best-fit sinusoidal function of
the form y = A sin(B(x − C)) + D for each island.
Answer. O‘ahu: y = 2.3727 sin(0.502443(x − 4.72583)) + 25.005;
Rarotonga: y = 2.24202 sin(0.521233(x + 1.16396)) + 23.7744

35. How do the temperature patterns of O‘ahu, situated in the north-
ern hemisphere, compare with those of Rarotonga, positioned in the
southern hemisphere?
Answer. During O‘ahu’s winter, Rarotonga experiences its sum-
mer, and similarly, during O‘ahu’s summer, Rarotonga experiences its
winter.

Exercise Group. Use the table below, which gives the average monthly
temperatures (in Celsius) at various latitudes in the South Pacific, to answer the
following questions. Express your answers in the form y = A sin(B(x − C)) + D.
Source: Data for Apia, Suva, Nuku‘alofa, and Rapa Nui obtained from http:
//www.worldclimate.com, retrieved on 18 March 2024; Data for Whangārei and
Dunedin obtained from National Institute of Water and Atmospheric Research
(NIWA)2, retrieved on 18 March 2024.

2NationalInstituteofWaterandAtmosphericResearch(NIWA)

http://www.worldclimate.com
http://www.worldclimate.com
https://niwa.co.nz/education-and-training/schools/resources/climate/meanairtemp
https://niwa.co.nz/education-and-training/schools/resources/climate/meanairtemp
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Apia Suva Nuku‘alofa Rapa Nui Whangārei Dunedin
Month 13.8°S 18.1°S 21.1°S 27.1°S 35.7°S 45.9°S
Jan (1) 27.6 26.7 25.6 23.3 19.9 15.3
Feb (2) 27.6 26.9 26 23.7 20.2 15
Mar (3) 27.8 26.7 25.8 23.1 18.8 13.7
Apr (4) 27.8 26 24.9 21.9 16.6 11.7
May (5) 27.4 24.8 23.1 20.1 14.4 9.3
Jun (6) 27.1 24 22.4 18.9 12.4 7.3
Jul (7) 26.7 23.2 21.3 18 11.6 6.6
Aug (8) 26.5 23.2 21.2 17.9 11.9 7.7
Sep (9) 26.7 23.7 21.7 18.3 13.3 9.5
Oct (10) 27 24.4 22.4 19 14.6 10.9
Nov (11) 27.4 25.2 23.5 20.4 16.4 12.4
Dec (12) 27.4 26.1 24.7 21.8 18.5 13.9

36. Determine a sinusoidal
function to represent the
average monthly temperature
in

(a) Apia, Sāmoa (13.8°S)

Answer. y =
0.65 sin(0.5236(x −
11)) + 27.15

(b) Suva, Fiji (18.1°S)

Answer. y =
1.85 sin(0.5236(x −
11)) + 25.05

(c) Nuku‘alofa, Tonga
(21.1°S)

Answer. y =
2.4 sin(0.5236(x − 11)) +
23.6

(d) Rapa Nui (27.1°S)

Answer. y =
2.9 sin(0.5236(x − 11)) +
20.8

(e) Whangārei, New
Zealand (35.7°S)

Answer. y =
4.3 sin(0.5236(x − 11)) +
15.9

(f) Dunedin, New Zealand
(45.9°S)

Answer. y =
4.35 sin(0.5236(x −
11)) + 10.95

37. Utilize a graphing utility to
identify the best-fit sinusoidal
function in

(a) Apia, Sāmoa (13.8°S)

Answer. y =
0.599155 sin(0.590429(x−
0.197373)) + 27.2133

(b) Suva, Fiji (18.1°S)

Answer. y =
1.86982 sin(0.532431(x +
1.0423)) + 25.0509

(c) Nuku‘alofa, Tonga
(21.1°S)

Answer. y =
2.41339 sin(0.521333(x +
1.07987)) + 23.5577

(d) Rapa Nui (27.1°S)

Answer. y =
2.93283 sin(0.494705(x +
1.55737)) + 20.6621

(e) Whangārei, New
Zealand (35.7°S)

Answer. y =
4.27205 sin(0.503071(x +
1.88988)) + 15.8716

(f) Dunedin, New Zealand
(45.9°S)

Answer. y =
4.07644 sin(0.524652(x +
1.8183)) + 11.1006
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38. Based on the sinusoidal
functions that you found,
what can you conclude about
the relationship between
temperature and latitude?
Answer. As latitude
increases (moving away from
the equator towards the
poles), the sinusoidal
function’s amplitude increases,
signifying greater temperature
variability, while its vertical
shift decreases, indicating
lower average temperatures at
higher latitudes.
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2.4 Inverse Trigonometric Functions
Swells are a crucial navigational tool, providing a consistent means of main-
taining a straight course over extended periods. Unlike stars, which may be
obscured during the day or on cloudy nights, or winds that can change direc-
tion frequently, swells tend to remain relatively constant. Crew members can
navigate a straight course by keeping the angle at which the swell passes the
canoe constant.

Even in poor visibility, when the crew may not see the swells, they can feel
them. Parts of the vaka (canoe) lift and lower as the swells pass beneath. Skilled
navigators use these movements to maintain course, even without directly seeing
the waves.

The lateral (side-to-side) rocking motion of a double-hull canoe is known as
roll. This motion occurs when a swell approaches from either the port (left) or
starboard (right) side, causing the vaka to initially lift the corresponding hull
(port or starboard), followed by the opposite hull, depending on the direction
of the swell.

When a swell approaches from the bow (front) of the canoe, it lifts the
front, causing the canoe to tilt backward before tilting forward. This motion
is known as pitch. Conversely, if the swell comes from the stern (back), the
canoe tilts forward and then backward.

When a swell approaches the canoe from an angle that is not perpendicular
to any side, a combination of pitch and roll occurs. The specific motion
experienced depends on the precise angle of the swell. For instance, if the
swell comes from an angle and lifts the starboard bow (front right), it may
subsequently lift the port bow, followed by the starboard stern, and finally the
port stern. However, with a slightly different angle, the sequence may change.
After lifting the starboard bow, it could lead to the starboard stern being lifted
next, followed by the port bow, and finally the port stern. This twisting motion
is referred to as a corkscrew effect due to its combination of motions.

The video in Figure 2.4.1 demonstrates how vaka Paikea moves as swells
pass under the hulls. A change in vaka motion can indicate either a change in
the canoe’s direction or a shift in the direction of ocean swells. In such cases,
the crew must assess the situation and, when conditions allow, utilize celestial
markers, such as the rising and setting of stars, to determine the direction of
the swells.

Standalone

Figure 2.4.1 As swells pass under vaka Paikea, the canoe pitches, rolls, and
corkscrews, depending on the angle of the swell. A navigator can use these
movements to keep a straight course. If you are viewing the PDF or a printed
copy, you can scan the QR code or follow the “Standalone” link to watch the
video online.

As vaka Paikea sails north in the Cook Islands from Rarotonga to Aitutaki
with a heading of 0◦, the swells are approaching the vaka from the southwest

https://www.kamuelayong.com/trigonometry/youtube-swell-movement.html
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and moving towards the northeast. Referring to Figure 1.2.17, which provides
heading angles, we observe that the swells have a heading ranging between 0◦

(north) and 90◦ (east).
Additional observations of the crew reveal that the swells hit Paikea in the

following order: 1) port stern (back left); 2) starboard stern (back right); 3) port
bow (front left); and 4) starboard bow (front right), as shown in Figure 2.4.2.
If Paikea is 14.8 m (50 ft) in length and 6.2 m (20 ft) in width, what is the
possible range of headings from which the swells may be approaching?

Waves

θN
or

th

Figure 2.4.2 Swells moving towards the northeast pass under vaka Paikea
heading.

To determine the range of headings, we start by considering one boundary,
which occurs when the swells are moving directly north with a heading of
0◦. To identify the other boundary, we want to find the angle at which the
swell intersects both the starboard stern and port bow simultaneously as it
passes beneath the vaka. Essentially, we want to find the angle that diagonally
traverses the canoe from one corner to another. To simplify this, we represent
the vaka as a rectangle and create a triangle by connecting the corners. The
angle, denoted as θ, is formed between the side adjacent to the 14.8 m length
of the canoe and the diagonal. This angle corresponds to the heading of the
swells, as shown in Figure 2.4.3.
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14
.8

m

6.2 m

θ

Figure 2.4.3 The deck of vaka Paikea can be simplified to a rectangle, and
its diagonal represents the threshold between different sequences of motions as
swells pass. The angle θ corresponds to the heading of the swells.

You may notice that for our given angle, θ, we have the opposite side of
length 6.2 m and the adjacent side of length 14.8 m, which are both related to
the tangent function:

tan θ = 6.2
14.8 .

Until now, the angles for the trigonometric problems we encountered were
given. However, to solve for the angle θ, we cannot simply divide by the letters
“tan”, since it is part of the tangent function, which takes an angle as input
and provides a ratio of sides as output. To find the angle θ, we need to use the
inverse tangent function, “tan^{-1}”, which takes the ratio of sides as input
and gives the angle as output. To find the angle θ, we need to use the inverse
function, which takes the ratio of sides as input and provides an angle as output.
In this section, we will explore inverse trigonometric functions, including their
properties and usage.

2.4.1 Inverse Trigonometric Functions
Recall from algebra that for a function f and its inverse function f−1 we have:

1. The Domain of f−1 = Range of f ;

2. The Range of f−1 = Domain of f ;

3. If f(a) = b then f−1(b) = a.

In terms of trigonometric functions, for example, if f(x) = sin x then
f−1(x) = sin−1 x. Now consider sin

(
π
4

)
= 1√

2 , then π
4 = sin−1

(
1√
2

)
.

Remark 2.4.4 Be Careful. Do not confuse the inverse trigonometric notation
with an exponent, in other words, sin−1 x ̸= 1

sin x . To avoid this, we will use
parentheses around the trigonometric function to denote the power of negative
one: (sin x)−1.
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Also recall from algebra that for a function, f , to have an inverse, f−1,
it must be one-to-one, meaning no horizontal line intersects the graph more
than once. Since this is not true for trigonometric functions, they do not have
inverses. We need functions to be one-to-one because both sin π

4 = 1√
2 and

sin 3π
4 = 1√

2 but if we took the inverse of sine, we wouldn’t know whether

to use sin−1
(

1√
2

)
= π

4 or sin−1
(

1√
2

)
= 3π

4 . To avoid this confusion and to
ensure the function is one-to-one, we can put restrictions on the domains of
each trigonometric function so they attain all the values in the range only once,
making the restricted function one-to-one, and thus having an inverse (see
Figure 2.4.5).

−π − π
2

π
2

π3π
2

2π

−1

1

f(x) = sin x

x

y

Figure 2.4.5 The graph of f(x) = sin x does not pass the horizontal line test
and is not one-to-one. If we restrict the graph to − π

2 ≤ x ≤ π
2 so that each

value in the range [−1, 1] is attained only once, then the restricted function is
one-to-one and has an inverse.

We will restrict the domain of y = sin x to the interval [− π
2 , π

2 ], the domain
of y = cos x to [0, π], and the domain of y = tan x to the interval (− π

2 , π
2 ).

Notice that the domain for each trigonometric function includes one quadrant
where the function is positive and one quadrant where it is negative. The
domains and the corresponding graphs for sine, cosine, and tangent are shown
in Figure 2.4.6, Figure 2.4.7, and Figure 2.4.8, respectively.

x

y

θ
− π

2
π
2

−1

1

f(x) = sin x

x

y

Figure 2.4.6 The domain of y = sin x (left) and its graph on the restricted
domain (right).
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x

y

θ
π
2

π

−1

1

f(x) = cos x

x

y

Figure 2.4.7 The domain of y = cos x (left) and its graph on the restricted
domain (right).

x

y

θ
− π

2
π
2

−5

5

f(x) = tan x

x

y

Figure 2.4.8 The domain of y = tan x (left) and its graph on the restricted
domain (right).

With these restrictions on the domains, we now have trigonometric functions
that are one-to-one and so we can define their inverse functions:
Definition 2.4.9 Inverse Sine. The inverse sine function is symbolized
by

y = sin−1 x and means x = sin y.

The inverse sine function is also called the arcsine function, and is denoted
by arcsin x. ♢

Definition 2.4.10 Inverse Cosine. The inverse cosine function is
symbolized by

y = cos−1 x and means x = cos y.

The inverse cosine function is also called the arccosine function, and is
denoted by arccos x. ♢

Definition 2.4.11 Inverse Tangent. The inverse tangent function is
symbolized by

y = tan−1 x and means x = tan y.

The inverse tangent function is also called the arctangent function, and is
denoted by arctan x. ♢
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Definition 2.4.12 Inverse Cosecant, Secant, and Cotangent. Inverse
cosecant, inverse secant, and inverse cotangent functions are not as common as
the other trigonometric functions and we will just summarize them.

y = csc−1 x means x = csc y,

y = sec−1 x means x = sec y,

y = cot−1 x means x = cot y.

♢

Definition 2.4.13 Domain and Range for Inverse Trigonometric
Functions. The domain and range for each function is:

Function Domain Range

sin−1 x [−1, 1]
[
− π

2 , π
2

]
cos−1 x [−1, 1] [0, π]
tan−1 x (−∞, ∞)

(
− π

2 , π
2

)
csc−1 x (−∞, −1] ∪ [1, ∞)

[
− π

2 , 0
)

∪
(
0, π

2
]

sec−1 x (−∞, −1] ∪ [1, ∞)
[
0, π

2
)

∪
(

π
2 , π

]
cot−1 x (−∞, ∞) (0, π)

♢

2.4.2 Finding the Exact Value of an Inverse Trigonometric
Function

Example 2.4.14 Evaluating Inverse Trigonometric Functions. Find
the exact value of:

(a) cos−1 ( 1
2
)

Solution. Let θ = cos−1 ( 1
2
)
. Evaluating the problem is the same as

determining the angle, θ, for which

cos θ = 1
2 .

Although there are infinitely many values of θ that satisfy the equation,
such as θ = π

3 and θ = 5π
3 , there is only one value that lies in the interval

[0, π]. Thus, cos−1 ( 1
2
)

= π
3 .

(b) tan−1(
√

3)

Solution. Let θ = tan−1(
√

3). We must find θ that satisfies tan θ =
√

3
while also ensuring θ is within the range of the inverse tangent function.
Because tan π

3 =
√

3 and − π
2 < π

3 < π
2 , we conclude that tan−1(

√
3) = π

3 .

(c) sin−1
(

− 1√
2

)
Solution. The angle, θ, in the interval [− π

2 , π
2 ] that satisfies sin θ = − 1√

2

is θ = sin−1
(

− 1√
2

)
= − π

4 .

□
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2.4.3 Approximations of Inverse Trigonometric Functions
To evaluate inverse trigonometric functions that do not have special angles as
values, we will need to use a calculator.

Remark 2.4.15 Using a Calculator. Using a calculator for inverse trigono-
metric functions: Most calculators will have a special key for the inverse sine,
inverse cosine, and inverse tangent functions. Depending on the calculator, we
may see the following keys for the inverse trigonometric functions:

Function Calculator Key
inverse sine SIN^-1 , INV SIN , ARCSIN , or ASIN
inverse cosine COS^-1 , INV COS , ARCCOS , or ACOS
inverse tangent TAN^-1 , INV TAN , ARCTAN , or ATAN

Often, the inverse trigonometry key can be found by first pressing 2nd or SHIFT
, followed by the trigonometry function key. For example, to get the SIN^-1
key, press 2nd SIN or SHIFT SIN .

Many calculators do not have specific keys for the inverse cosecant, inverse
secant, and inverse cotangent functions. Instead, we can use the Reciprocal
Identities (Definition 1.4.2) to get:

Function Calculator Key
inverse cosecant 1 / SIN^-1
inverse secant 1 / COS^-1
inverse cotangent 1 / TAN^-1

Example 2.4.16 Finding an Approximate Value of Inverse Trigonomet-
ric Functions. Use a calculator to approximate the value of each expression
in radians, rounded to two decimals.
(a) cos−1(−0.39)

Solution. First verify the mode of the calculator is in radians. Then,
press the following keys COS^-1 ( (-) 0.39 ) ENTER to get

cos−1(−0.39) ≈ 1.9714279195.

If the calculator does not have the COS^-1 key, then use the appropriate
key(s) for inverse cosine, such as INV COS , ARCCOS , or ACOS .
On some calculators, COS^-1 is pressed first, then ( (-) 0.39 ) ; while
other calculators the sequence is reversed with ( (-) 0.39 ) pressed
first, then COS^-1 . Verify with the calculator’s manual.

(b) tan−1(12)

Solution. First verify the mode of the calculator is in radians. Then,
using the appropriate key for inverse tangent, press the following keys
TAN^-1 ( 12 ) ENTER to get

tan−1(12) ≈ 1.48765509491.

(c) sin−1(0.8)

Solution. First verify the mode of the calculator is in radians. Then,
using the appropriate key for inverse sine, press the following keys SIN^-1

( 0.8 ) ENTER to get

sin−1(0.8) ≈ 0.927295218002.

□
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Example 2.4.17 Swells Approaching Paikea. At the start of this section,
we discussed the swells passing beneath Paikea in the following order: 1) port
stern (back left); 2) starboard stern (back right); 3) port bow (front left); and
4) starboard bow (front right). Given that Paikea is 14.8 m (50 ft) in length
and 6.2 m (20 ft) in width, what is the possible range of headings from which
the swells may be approaching?
Solution. If the swells are moving directly north, the heading will be 0◦.

To find the other boundary, we want to determine the angle at which the
swell simultaneously intersects both the starboard stern and port bow as it
passes beneath the vaka. This angle, denoted as θ, is formed between the side
adjacent to the 14.8 m length of the canoe and the diagonal. Using the tangent
function we have:

tan θ = 6.2
14.8 .

Solving for θ using the inverse tangent function we get:

tan−1
(

6.2
14.8

)
≈ 22.73◦.

Therefore, the possible range of headings from which the swells may be
approaching is between 0◦ (directly north) and approximately 22.73◦. □

Example 2.4.18 A gift for Mau. In 1999, after Mau Pialug, also known as
Papa Mau, sailed from Hawai‘i to his home in Satawal, Micronesia aboard the
Makali‘i, the crew of Nā Kālai Wa‘a expressed their gratitude to the man who
shared his knowledge of navigation by constructing a sister canoe to Makali‘i.
This vessel, named the Alingano Maisu, was a 56-foot long double-hulled
voyaging canoe. In 2007, accompanied by the Hōkūle‘a, the Alingano Maisu
embarked on her inaugural journey to Satawal, continuing Papa Mau’s legacy
of navigation in his home islands.

During this journey, the canoes sailed directly towards Johnston Atoll, using
it as a sighting point without making a stop, before proceeding to their first
destination in Majuro, Marshall Islands. The island of Majuro is situated 1,108
nautical miles west and 575 nautical miles south of Johnston Atoll.

What house do we need to sail in and what distance will we need to sail? If
the wa‘a travels at 5 knots, how many days will it take to reach the destination?
Note that 1 knot = 1 nautical mile/hour.

Majuro

Johnston Atoll

course

1,108 NM

575 NM

θ
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We will use the tangent function because we are given the side opposite to
θ (575 NM) and the side adjacent to θ (1,108 NM) and express it as

tan θ = 575
1, 108 .

Solution. Since we were able to write tan θ = 575
1,108 , we can use a calculator

or other technology to evaluate the inverse tangent to find our angle:

θ = tan−1
(

575
1, 108

)
≈ 27.4◦.

Because this angle is in Quadrant III, we find its value on the Unit Circle by
adding 180◦ + 27.4◦ = 207.4◦. Next we refer to the Star Compass with angles
(Figure 1.2.4) to conclude we will need to sail towards the House ‘Āina Kona.

To determine the distance, d, we use the Pythagorean Theorem:

d =
√

5752 + 1, 1082 ≈ 1, 248.3NM.

Finally, we note that since (speed) = (distance)/(duration), we can rearrange
the terms to get (duration) = (distance)/(speed). If we travel at 5 knots (5
NM/hr), we can calculate the duration as

duration =1, 248.3 NM
5 knot

distance
speed

=1, 248.3 NM
5 NM/hr 1 knot=1 NM/hr

=249.7 hours NM
NM/hr = NM · hr

NM = hr

=249.7 hours · day
24 hours

≈10.4 days.

□

Example 2.4.19 Finding Land. As Hōkūle‘a is sailing towards Rapa Nui,
the navigator uses a process called dead reckoning to determine their position
based on the latitude, measured by the stars, and other factors such as the
estimated distance traveled, speed, and direction. Once the navigator has
determined that they are in the vicinity of land, her attention is now focused
on looking for signs of land. One method navigators will use is to look for
land-based seabirds such as the manu-o-Kū (fairy tern) and the noio (noddy
tern), which go out to sea in the morning to fish and return to land at night.
However, Rapa Nui’s seabird population has been reduced so she will look
for other signs such as drifting land vegetation; clouds that form over islands;
the loom of the island when white sand and still lagoons reflect the sunlight
or moonlight upwards; and distinctive patterns of swells bending (refracting)
around or reflecting off islands. Land will be spotted when the navigator first
sees Ma‘unga Terevaka, the tallest point in Rapa Nui, which stands at 1,665 ft.
Figure 2.4.20 depicts the relation between the canoe and island (left) as well as
what is seen from the deck of the canoe (right).
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Standalone

Figure 2.4.20 Watch as the canoe approaches an island from two different
views. On the left, see a side view as the island gradually comes into sight over
the horizon. On the right, experience the perspective from the canoe’s deck,
observing the island appearing to rise from the water. This dual perspective
provides a unique glimpse into the legend of Māui, the demigod who pulled
the islands from the ocean with his fish-hook. If you are viewing the PDF or
a printed copy, you can scan the QR code or follow the “Standalone” link to
watch the video online.

1. On the deck of Hōkūle‘a, a navigator stands at 9 ft above sea level. If she
looks out to the sea, how far is she from horizon? Assume the radius of
the earth at Rapa Nui is 20,911,171 feet.

2. How far is Hōkūle‘a from Ma‘unga Terevaka when it first becomes visible
over the horizon to someone standing 9ft above sea level?

Solution.

1. We begin by assuming that the earth is a sphere with radius R. Standing
on Hōkūle‘a, the line from the navigator’s eye to the horizon is tangent
to the circle of radius R.

RR

h

θ1

s1

Here h = 9 ft, represents the height of the navigator’s eye above sea level,
R = 20, 911, 171 ft is the radius of the earth at Rapa Nui, and s1 is the
arc length or distance along the surface of the earth from the navigator to
the horizon. We have written the distances in feet since the height of the
navigator is in feet. Recall from Theorem 1.2.26 the formula for finding
the arc length is s1 = 2πR ·

(
θ1

360
)
. Since we know R, we only need to find

θ1. Notice the right triangle.

https://www.kamuelayong.com/trigonometry/youtube-finding-land.html
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R

R+h

θ1

Since we know the adjacent side and hypotenuse of this triangle, we can
use cosine:

cos θ1 = R

R + h
= 20, 911, 171

20, 911, 171 + 9 = 20, 911, 171
20, 911, 180 .

To solve for θ1, we use the inverse cosine:

θ1 = cos−1
(

20, 911, 171
20, 911, 180

)
≈ 0.053◦.

Now we are ready to calculate the arc length, s1:

s1 = 2π · 0.053◦

360◦ · 20, 911, 171 feet ≈ 19, 343 feet.

Converting to miles we get

s1 ≈ 19, 401 feet · 1 mile
5, 280 feet ≈ 3.7 miles.

So the horizon is 3.7 miles from the navigator.

2. Next, to determine how far the navigator is from Ma‘unga Terevaka when
it emerges over the horizon, we need to align the top of the mountain
with line from the navigator’s eye to the horizon.

R

R

H

θ2

R

h

θ1

s2
s1

Here, H = 1, 665 ft is the height of Ma‘unga Terevaka. To find the
distance from the top of the mountain to the horizon, we will need to
determine s2. We begin by redrawing the triangle.
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R

R+H

θ2

The angle is then given by

θ1 = cos−1
(

R

R + H

)
= cos−1

(
20, 911, 171

20, 911, 173 + 1, 665

)
= cos−1

(
20, 911, 171
20, 912, 836

)
≈ 0.723◦.

We conclude that the distance from Ma‘unga Terevaka to the horizon is

s2 = 2π · 0.723◦

360◦ · (20, 911, 171 feet) · 1 mile
5, 280 feet ≈ 50.0 miles.

Therefore, the total distance between the navigator and Ma‘unga Terevaka
is s1 + s2 = 3.7 + 50.0 = 53.7 miles. Note that this is the distance when
the island may first be seen, however, weather conditions may reduce
visibility.

□

2.4.4 Graphs of Inverse Trigonometric Functions
Recall from algebra that:

1. The point (a, b) is on the graph of f if and only if the point (b, a) is on
the graph of f−1.

2. The graphs of f−1 and f are reflections of each other about the line
y = x.

The graph of each inverse trigonometric function can be obtained by reflect-
ing the graph of the original function about the line y = x.
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− π
2 −1 1 π

2

− π
2

−1

1

π
2

y = sin x

(
π
2 , 1

)

(
− π

2 , −1
)

y = sin−1 x

(
1, π

2
)

(
−1, − π

2
)

x

y

−1 π
2

π

−1

π
2

π

f(x) = cos x

(0, 1)

(π, −1)

f(x) = cos−1 x

(1, 0)

(−1, π)

x

y
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−1 1

−1

1

f(x) = tan x

f(x) = tan−1 x

y = − π
2

y = π
2

x = − π
2 x = π

2

x

y

2.4.5 Composition of Inverse Trigonometric Functions
Recall from Algebra that if f is a one-to-one function with inverse f−1, then:

1. f(f−1(y)) = y for every y in the domain of f−1.

2. f−1(f(x)) = x for every x in the domain of f .

In terms of trigonometric functions, f(f−1(y)) = y holds for all y in the
domain, however, we need to be careful when evaluating f−1(f(x)) = x because
the domain of f−1 is restricted.

Definition 2.4.21 Properties of Composition of Trigonometric Func-
tions.

sin(sin−1 x) = x when −1 ≤ x ≤ 1
cos(cos−1 x) = x when −1 ≤ x ≤ 1
tan(tan−1 x) = x when −∞ < x < ∞
sin−1(sin x) = x only when − π

2 ≤ x ≤ π
2

cos−1(cos x) = x only when 0 ≤ x ≤ π

tan−1(tan x) = x only when − π
2 < x < π

2

♢

Example 2.4.22 Composition of a trigonometric function and the
inverse of the same trigonometric function. Find the exact value of each
expression:
(a) cos−1 (

cos π
8

)
Solution. Since π

8 is in the interval [0, π], then from the properties of
compositions of inverse functions, we get

cos−1
(

cos π

8

)
= π

8 .

(b) tan(tan−1(7))
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Solution. Since 7 is in the interval (−∞, ∞),

tan(tan−1(7)) = 7.

(c) sin−1 (
sin

(
− π

7
))

Solution. Since − π
7 is in the interval

[
− π

2 , π
2

]
,

sin−1
(

sin
(

−π

7

))
= −π

7 .

(d) sin−1 (
sin 5π

7
)

Solution. Note that 5π
7 is not in the interval

[
− π

2 , π
2

]
. In order to

evaluate the expression, we first need to find an angle, θ, such that
− π

2 ≤ θ ≤ π
2 and sin 5π

7 = sin θ. Since π
2 < 5π

7 < π, 5π
7 is in Quadrant II.

Recall from Section 1.3 that our reference angle is θ = π − 5π
7 = 2π

7 .

x

y

5π
72π

7
2π
7

Since 2π
7 is in the interval

[
− π

2 , π
2

]
,

sin−1
(

sin 5π

7

)
= sin−1

(
sin 2π

7

)
= 2π

7 .

(e) cos(cos−1(−0.283))

Solution. Since −0.283 is in the interval [−1, 1],

cos(cos−1(−0.283)) = −0.283.

□
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Now we will look at what happens when we need to evaluate the composition
of a trigonometric function and the inverse of a different trigonometric function.

Example 2.4.23 Composition of a trigonometric function and the
inverse of a different trigonometric function. Find the exact value of:
(a) cos

(
tan−1 ( 4

3
))

Solution. Let θ be an angle in the range of the inverse tangent, that is,
let θ be in the interval

(
− π

2 , π
2

)
such that θ = tan−1 ( 4

3
)
. This equation

is equivalent to tan θ = 4
3 . Since tan θ > 0, we know that θ must be in

Quadrant I
(
0 < θ < π

2
)
. Let (x, y) be a point on the terminal side of θ.

Then by the trigonometric ratios,

tan θ = opposite
adjacent = y

x

Since we have tan θ = 4
3 , we let x = 3 and y = 4, as shown in the figure

below.

x

y

θ

(x, y) = (3, 4)

x = 3

y = 4
r

Evaluating cos
(
tan−1 ( 4

3
))

is equivalent to evaluating

cos θ = adjacent
hypotenuse = 3

r
,

where r =
√

x2 + y2 =
√

32 + 42 =
√

9 + 16 =
√

25 = 5. So,

cos
(

tan−1
(

4
3

))
= cos θ = 3

5 .
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(b) sin
(
cos−1 (

− 3
8
))

Solution. Let θ be an angle in the range of the inverse cosine, that is,
let θ be in the interval [0, π] such that θ = cos−1 (

− 3
8
)
. This equation is

equivalent to cos θ = − 3
8 . Since cos θ < 0, we know that θ must be in

Quadrant II
(

π
2 < θ < π

)
. Let (x, y) be a point on the terminal side of θ.

Then by the trigonometric ratios,

cos θ = adjacent
hypotenuse = x

r
.

Since we have cos θ = − 3
8 , we get x

r = − 3
8 which gives us either x = −3

and r = 8 or x = 3 and r = −8. Since θ is in Quadrant II, we know that
x is negative, thus x = −3 and r = 8, as shown in the figure below.
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x

y

θ

(x, y)

x = −3

y
r = 8

Evaluating sin
(
cos−1 (

− 3
8
))

is equivalent to evaluating

sin θ = opposite
hypotenuse = y

8 ,

where

r2 = x2 + y2

82 = (−3)2 + y2

64 = 9 + y2
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y2 = 55.

Thus y =
√

55. So,

sin
(

cos−1
(

−3
8

))
= sin θ =

√
55
8 .

Note that sin θ is positive, since sine is positive in Quadrant II.

□

2.4.6 Exercises

Exercise Group. What are the domain and range of
1. y = sin x

Answer. D: −∞ < x < ∞;
R: −1 ≤ y ≤ 1

2. y = sin−1 x

Answer. D: −1 ≤ y ≤ 1; R:
− π

2 ≤ y ≤ π
2

3. y = cos x

Answer. D: −∞ < x < ∞;
R: −1 ≤ y ≤ 1

4. y = cos−1 x

Answer. D: −1 ≤ y ≤ 1; R:
−0 ≤ y ≤ π

Exercise Group. Determine the exact value of each expression in radians.
5. tan−1 (0)

Answer. 0
6. tan−1 (

−
√

3
)

Answer. − π
3

7. cos−1
(

− 1√
2

)
Answer. 3π

4

8. sin−1
(

1√
2

)
Answer. π

4

9. tan−1 (−1)
Answer. − π

4

10. sin−1
( √

3
2

)
Answer. π

3

11. cos−1 (−1)
Answer. π

12. cos−1
(

1√
2

)
Answer. π

4

13. sin−1 (1)
Answer. π

2

14. sin−1
(

−
√

3
2

)
Answer. − π

3

15. cos−1 (
− 1

2
)

Answer. 2π
3

16. tan−1
(

1√
3

)
Answer. π

6

Exercise Group. Use a calculator to approximate each expression. Provide
your answer in radians, rounding to two decimal places.

17. cos−1
( √

5
3

)
Answer. 0.73

18. sin−1 (0.63)
Answer. 0.68

19. tan−1 (√
7
)

Answer. 1.21

20. sin−1
( √

2
9

)
Answer. 0.16

21. tan−1 (0.7)
Answer. 0.61

22. cos−1 (−0.9)
Answer. 2.69

23. sin−1 (−0.6)
Answer. −0.64

24. cos−1 ( 1
4
)

Answer. 1.32
25. cos−1 (−0.4)

Answer. 1.98
26. tan−1 (−45.6)

Answer. −1.55
27. sin−1 (−0.8)

Answer. −0.93
28. tan−1 (78.9)

Answer. 1.56

Exercise Group. In Exercise Group 1.4.7.1–8, we determined the values of
the six trigonometric functions for each triangle. Now, use a calculator to find
the value of θ in degrees, rounding to two decimal places.
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29.

3

5 4

θ

Answer. 53.13◦

30.

5

√
74

7

θ

Answer. 35.54◦

31.

4

6

θ

Answer. 56.31◦

32.

1312

θ

Answer. 22.62
33.

7

14

θ

Answer. 63.43◦

34.

4

4

θ

Answer. 45◦
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35.

2

√
10

θ

Answer. 50.77◦

36.

2

3

θ

Answer. 33.69◦

Exercise Group. Use properties of composition of trigonometric functions to
find the exact value of each expression. Write “not defined” if no value exists.

37. sin−1 (
sin π

7
)

Answer. π
7

38.
cos−1 (

cos
(
− π

7
))

Answer. π
7

39. sin(sin−1(−0.8))
Answer. −0.8

40.
tan−1 (

tan
(
− 2π

9
))

Answer. − 2π
9

41. cos(cos−1 1.4)
Answer. Not
defined

42. sin(sin−1 0.74)
Answer. 0.74

43. tan(tan−1 24)
Answer. 24

44.
cos−1 (

cos
(
− π

5
))

Answer. π
5

45.
tan(tan−1(−4.3))
Answer. −4.3

46. tan−1 (
tan π

8
)

Answer. π
8

47. cos(cos−1 0.39)
Answer. 0.39

48. sin−1 (
sin 4π

5
)

Answer. π
5

Exercise Group. Find the exact value of each composite function. Write
“not defined” if no value exists. You may find Table 1.5.18 useful.

49. sin
(
cos−1 1

2
)

Answer.
√

3
2

50. cot
(

sin−1
(

−
√

3
2

))
Answer. − 1√

3

51. csc
(
tan−1 1

)
Answer.

√
2

52. sec
(
sin−1 (

− 1
2
))

Answer. 2√
3

53. cos
(
tan−1 (

−
√

3
))

Answer. 1
2

54. tan
(
cos−1 0

)
Answer. Not defined

Exercise Group. Find the exact value of each composite function. Write
“not defined” if no value exists.

55. sin
(
tan−1 3

4
)

Answer. 3
5

56. csc
(

cos−1
√

3
7

)
Answer. 7√

46

57. sec
(
tan−1 (

−
√

5
))

Answer.
√

6
58. cos

(
sin−1

√
7

3

)
Answer.

√
2

3

59. tan
(
sin−1 (

− 1
3
))

Answer. − 1√
8

60. cot
(
cos−1 (

− 2
5
))

Answer. − 2√
21
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61. tan
(
csc−1 ( 9

8
))

Answer. 8√
17

62. sec
(
sin−1 (

− 2
5
))

Answer. 5√
21

Exercise Group. Utilizing the fact that x = x
1 and sketching a right triangle,

find the exact value of the expression in terms of x.
63. cos

(
tan−1 x

)
Answer. 1√

x2+1

64. sin
(
cos−1 x

)
Answer.

√
1 − x2

65. sec
(
sin−1 x

)
Answer. 1√

1−x2

66. sin
(
sec−1 x

)
Answer.

√
x2−1
x

Exercise Group. Graph the function.
67. y = 4 cos−1 x

Answer.

−1 −0.5 0.5 1

π

2π

3π

4π

x

y

68. y = tan−1 x + π
2

Answer.

−10 −5 5 10
− π

2

π
2

π

3π
2

x

y

69. y = sin−1( 1
2 x)

Answer.

−2 −1 1 2

− π
2

− π
4

π
4

π
2

x

y

70. y = − sin−1(x − 1)
Answer.

0.5 1 1.5 2

− π
2

− π
4

π
4

π
2

x

y

71. Sunrise on Mauna Kea. The summit of Mauna Kea is the highest
point in Hawai‘i and sits 13,803 ft above the sea level. If we stand at the
summit, we will be able to see the sun rise before someone standing at the
sea level just north or south of Mauna Kea (at the same latitude). In fact,
we will see the sunrise at the same time as someone at sea level sailing in a
wa‘a to the east of Mauna Kea. Assume the radius of Earth is 20,917,655
feet.

(a) How far is the horizon when someone 5 ft tall stands at sea level to
watch the sun rise? Round the answer to the nearest tenth of a mile.

Answer. 2.7 miles

(b) How far is the horizon when someone 5 ft tall stands on the summit
to watch the sunrise? Round the answer to the nearest tenth of a
mile.

Answer. 143.9 miles
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(c) How much faster would someone 5 ft tall standing on the top of the
mountain see the sunrise than someone 5 ft tall standing at sea level?
Express the answer in minutes, rounded to one decimal place.

Hint. The ratio of the distance to the horizon (the previous answers)
to the circumference of the Earth (2πR) is equal to the ratio of the
time it takes to see the sunrise to the 24 hours (1,440 minutes) of
Earth’s rotation. Compute the time it takes to see the sunrise from
the top of the mountain and the shore, then calculate the difference.

Answer. 8.2 minutes
72. Māui Capturing the Sun. According to mo‘olelo, or legend, the sun

traveled very fast across the sky, leaving people with days so short there
was not enough time to carry on with their daily lives. Determined to slow
the sun, the demigod Māui climbed to the summit of Haleakalā, which
stands at 10,023 feet, to snare the sun. Assume the radius of the Earth at
Haleakalā is the same as at Mauna Kea, 20,917,655 feet.

R

R

h

θ

s

Sun

(a) How far is the horizon when Māui stands at the summit? Assume
Māui’s eyes are 7 ft from the ground. Round your answer to the
nearest tenth of a mile.

Answer. 122.7 miles

(b) How much sooner would Māui see the sun emerge over the horizon
compared to someone whose eyes are 7 feet above sea level? Express
your answer in minutes, rounded to one decimal place.

Answer. 7.1 minutes



Chapter 3

Analytic Trigonometry

3.1 Trigonometric Identities
In this chapter, we explore trigonometric identities and formulas, essential tools
that enable us to algebraically manipulate and solve complex trigonometric
equations. These identities and formulas enable us to analyze expressions in
various forms, often simplifying complex expressions into ones that are easily
solvable and interpretable. By doing so, we increase our ability to accurately
model the world around us.

3.1.1 Fundamental Trigonometric Identities
An identity in mathematics is an equation that remains true for all valid
values of its variables. We begin by reviewing some of the basic trigonometric
identities from Chapter 1, collectively known as the fundamental trigonometric
identities.
Definition 3.1.1 The fundamental trigonometric identities are:

1. Reciprocal Identities (Definition 1.4.2)

sin θ = 1
csc θ

cos θ = 1
sec θ

tan θ = 1
cot θ

csc θ = 1
sin θ

sec θ = 1
cos θ

cot θ = 1
tan θ

2. Quotient Identities (Definition 1.4.3)

tan θ = sin θ

cos θ
cot θ = cos θ

sin θ

3. Pythagorean Identities (Definition 1.5.20)

sin2 θ + cos2 θ = 1
1 + tan2 θ = sec2 θ

1 + cot2 θ = csc2 θ

4. Even-Odd Identities (Definition 1.5.22)
The cosine and secant functions are even.

cos(−θ) = cos θ sec(−θ) = sec θ

178
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The sine, cosecant, tangent, and cotangent functions are odd.

sin(−θ) = − sin θ csc(−θ) = − csc(θ)
tan(−θ) = − tan θ cot(−θ) = − cot(θ)

5. Cofunction Identities (Definition 1.4.7)

sin θ = cos
(π

2 − θ
)

, cos θ = sin
(π

2 − θ
)

tan θ = cot
(π

2 − θ
)

, cot θ = tan
(π

2 − θ
)

sec θ = csc
(π

2 − θ
)

, csc θ = sec
(π

2 − θ
)

♢

3.1.2 Simplifying Trigonometric Expressions
We use a combination of trigonometric identities, formulas, and techniques from
algebra to manipulate and simplify trigonometric expressions.

Example 3.1.2 Simplify
tan2(x) · csc2(x).

Solution. We can simplify this expression by writing each function in terms
of sine and cosine functions:

tan2(x) · csc2(x) = sin2(x)
cos2(x) · 1

sin2(x)
= 1

cos2(x) = sec2(x).

□

Example 3.1.3 Simplify

sin2(x)(cot2(x) − 1).

Solution. We can simplify this expression by first using the Pythagorean
Identity and then using the Reciprocal Identity:

sin2(x)(cot2(x) − 1) = sin2(x)(− csc2(x)) = sin2(x)
(

− 1
sin2(x)

)
= −1.

□

3.1.3 Verifying Trigonometric Identities
To verify trigonometric identities, we begin with an expression on one side of
the equation and manipulate it using trigonometric identities and algebraic
techniques until it matches the expression on the other side.

Remark 3.1.4 Steps for Verifying Trigonometric Identities. To verify
that an equation is an identity:

1. Pick an expression on one side of the equation. Often it is the more
complicated expression.

2. Transform the expression using techniques such as trigonometric identi-
ties, rewriting in terms of sine and cosine functions, factoring, common
denominator, or multiplying the numerator and denominator by the same



CHAPTER 3. ANALYTIC TRIGONOMETRY 180

term.

3. Continue manipulating until the transformed expression matches the other
side of the equation.

4. If it is difficult to make one side equal the other, try manipulating both
sides separately and make them match to reach the same result.

Note: Unlike solving equations where we perform the same operation on
both sides of the equal sign, when verifying trigonometric identities, we work
with only one side and manipulate it to resemble the other side.
Example 3.1.5 Verify the Identity by Rewriting in Terms of Sine
and Cosine. Verify the identity

sin(x)
tan(x) = cos(x).

Solution. We use the Quotient Identity to rewrite tan(x) in terms of sin(x)
and cos(x):

sin(x)
tan(x) = sin(x)

sin(x)
cos(x)

=���sin(x) · cos(x)
���sin(x) = cos(x).

□

Example 3.1.6 Verify the Identity by Factoring. Verify the identity

cos4(x) + sin2(x) cos2(x) = cos2(x).

Solution. First notice that both terms in cos4(x) + sin2(x) cos2(x) contain
cos2(x). Then

cos4(x) + sin2(x) cos2(x) = cos2(x) · cos2(x) + sin2(x) cos2(x)
= cos2(x) ·

(
cos2(x) + sin2(x)

)
= cos2(x) · 1
= cos2(x).

□

Example 3.1.7 Verify the Identity by Even-Odd Properties. Verify
the identity

cos(x) − sin(x)
cos(−x) + sin(−x) = 1

Solution. By the Even-Odd Properties, we have sin(−x) = − sin(x) and
cos(−x) = cos(x). Thus,

cos(x) − sin(x)
cos(−x) + sin(−x) = cos(x) − sin(x)

cos(x) − sin(x) = 1.

□

Example 3.1.8 Verify the Identity by Multiplying the Numerator
and Denominator by the Same Term. Verify the identity

sin(x)
sin(x) + cos(x) = 1

1 + cot(x) .
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Solution. Multiplying both the numerator and denominator by 1
sin(x) , we get

sin(x)
sin(x) + cos(x) ·

1
sin(x)

1
sin(x)

=
���sin(x) · 1

���sin(x)

���sin(x) · 1
���sin(x) + cos(x) · 1

sin(x)

= 1
1 + cos(x)

sin(x)

= 1
1 + cot(x) .

□

Example 3.1.9 Verify the Identity by Manipulating Both Sides
Separately. Verify the identity

1 − cos x

1 + cos x
= (csc x − cot x)2.

Solution. We begin by simplifying the right-hand side of the equation:

(csc x − cot x)2 = csc2 x − 2 csc x cot x + cot2 x

= csc2 x + cot2 x − 2 csc x cot x

= csc2 x + cot2 x − 2 1
sin x

cos x

sin x

= csc2 x + cot2 x − 2 cos x

sin2 x
.

Next, we will manipulate the left-hand side of the equation to simplify it
into csc2 x + cot2 x − 2 cos x

sin2 x .

1 − cos x

1 + cos x
= (1 − cos x)(1 − cos x)

(1 + cos x)(1 − cos x)

= 1 − 2 cos x + cos2 x

1 − cos2 x

= 1 + cos2 x − 2 cos x

sin2 x

= 1
sin2 x

+ cos2 x

sin2 x
− 2 cos x

sin2 x

= csc2 x + cot2 x − 2 cos x

sin2 x
.

Thus, since the left-hand side and the right-hand side of the equation can
both be manipulated to equal csc2 x + cot2 x − 2 cos x

sin2 x , we have established the
identity. □

3.1.4 Exercises

Exercise Group. Verify the identity.
1. cos θ sec θ = 1
2. cos x csc x = cot x

3. cos θ sec θ
tan θ = cot θ

4. cot t tan t
csc t = sin t

5. (1 + tan θ)(1 − tan θ) + sec2 θ = 2
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6. 1 − sin2(x) = cos2(x)
7. 1 − sec2(θ) = − tan2(θ)
8. tan(t) · cot(t) = 1
9. (sin θ + cos θ)2 = 1 + 2 sin θ cos θ

10. (1 − cot θ)2 = csc2 θ − 2 cot θ

11. sin θ
csc θ + cos θ

sec θ = 1

12. sin2 t(csc2 t + sec2 t) = sec2 t

13. sin2(x) − sin2(x) cos2(x) = sin4(x)
14. sin2(−x) + cos2(−x) = 1
15. cos(−t) + sin(−t) = cos(t) − sin(t)
16. (sin θ + cos θ)2 − 2 sin θ cos θ = 1
17. cot2 x(sec2 x − 1) = 1
18. (1 + sin(t))(1 + sin(−t)) = cos2 t

19. tan4 θ = tan2 θ sec2 θ − tan2 θ

20. 1
1−sin x + 1

1+sin x = 2 sec2 x

21. 1
csc t+1 − 1

csc t−1 = −2 tan2 t

22. 1
1−cos θ + 1

1+cos θ = 2 csc2 θ

23. 1
1−cos θ + 1

1+cos θ = 2 + 2 cot2 θ

24. 1−cos2 x
cos x = sin x tan x

25. 1 − cos2 θ
1+sin θ = sin θ

26. sec2 t + csc2 t = csc2 t sec2 t

27. 1+tan x
1−tan x = cot x+1

cot x−1

28. cos θ
1−sin θ = 1+sin θ

cos θ

29. tan2 t
sec t+1 = 1−cos t

cos t

30. 1+cos θ
cos θ = tan2 θ

sec θ−1
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3.2 Addition and Subtraction Formulas
In Section 1.4, we used right triangles to determine the deviation of a wa‘a
(canoe) from its course based on the angle of deviation. If a wa‘a sails for 120
nautical miles (NM), we were able to calculate the deviation from its course
using right triangles to get the equation:

deviation = (120 NM) · sin(θ).

start

end

120 NM

reference course

deviation
θ

Before setting sail, a voyager studies a table listing the deviation distances
corresponding to different houses of deviation. It’s crucial to understand
that while adding angles may yield a third angle, adding their corresponding
deviations will not accurately determine the total deviation. In other words:

sin(α) + sin(β) ̸= sin(α + β)

for certain angles of deviation α and β.
To illustrate this, let’s calculate the deviation distances for 1, 2, and 3

houses respectively. Using the given formula, we have:

120 sin(1 house) = 120 sin(11.25◦) ≈ 23.4 NM
120 sin(2 houses) = 120 sin(22.5◦) ≈ 45.9 NM
120 sin(3 houses) = 120 sin(33.75◦) ≈ 66.7 NM

start
1 house, 120 NM2 houses,

120 NM
3 houses,

120
NM

reference course

23.4 NM

45.9 NM

66.7 NM

However,

120 sin(1 house) + 120 sin(2 houses) ≈ 23.4 + 45.9 NM ≈ 69.3 NM,

which differs from the actual deviation of 66.7 NM when deviating by 3 houses.
These calculations demonstrate that the deviation distances for multiple

houses cannot be determined by simply adding individual deviations, high-
lighting the importance of understanding trigonometric principles for accurate
navigation. In this section, we will explore the formulas for the addition and
subtraction of angles in trigonometric functions.
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3.2.1 Addition and Subtraction Formulas for Cosine
First we will derive the addition and subtraction formulas for the cosine function.
Definition 3.2.1 Addition and Subtraction Formulas for Cosine.

cos(α + β) = cos α cos β − sin α sin β

cos(α − β) = cos α cos β + sin α sin β

♢
Proof. First we will prove the Subtraction Formula for Cosine

cos(α − β) = cos α cos β + sin α sin β.

We begin by considering two points on the unit circle. Point P is at an angle
of β in standard position with coordinates (cos β, sin β) and point Q is at an
angle of α in standard position with coordinates (cos α, sin α).

x

y

O

Q(cos α, sin α)

P (cos β, sin β)

α
β

α − β

We use the Distance Formula to calculate the distance between P and Q to get

d(P, Q) =
√

(cos α − cos β)2 + (sin α − sin β)2

=
√

cos2 α − 2 cos α cos β + cos2 β + sin2 α − 2 sin α sin β + sin2 β

=
√

(cos2 α + sin2 α) + (cos2 β + sin2 β) − 2 cos α cos β − 2 sin α sin β.

By the Pythagorean Identity (Definition 1.5.20), cos2 α + sin2 α = 1 and
cos2 β + sin2 β = 1. Thus the distance becomes

d(P, Q) =
√

1 + 1 − 2 cos α cos β − 2 sin α sin β

=
√

2 − 2 cos α cos β − 2 sin α sin β.



CHAPTER 3. ANALYTIC TRIGONOMETRY 185

Next, consider two additional points on a second unit circle. Point A has
coordinates (1, 0) and Point B is at an angle of α − β in standard position with
coordinates (cos(α − β), sin(α − β)).

x

y

O

A(1, 0)

B(cos(α − β), sin(α − β))

α − β

The distance between A and B is

d(A, B) =
√

(cos(α − β) − 1)2 + (sin(α − β) − 0)2

=
√

cos2(α − β) − 2 cos(α − β) + 1 + sin2(α − β)

=
√

(cos2(α − β) + sin2(α − β)) − 2 cos(α − β) + 1

=
√

1 − 2 cos(α − β) + 1

=
√

2 − 2 cos(α − β).

Note that since OP , OQ, OA, and OB are line segments from the center to
points on the unit circle, they are congruent and have length of 1. Also note that
∠POQ = ∠AOB = α − β. Since two sides and the included angle of △OPQ
and △OAB are congruent, we can conclude by the Side-Angle-Side Theorem
(SAS) in geometry that the two triangles are congruent. Thus, corresponding
sides have the same lengths, giving us d(P, Q) = d(A, B). Substituting our
results for d(P, Q) and d(A, B) we get

d(P, Q) = d(A, B)√
2 − 2 cos α cos β − 2 sin α sin β =

√
2 − 2 cos(α − β)

2 − 2 cos α cos β − 2 sin α sin β = 2 − 2 cos(α − β)
−2 cos α cos β − 2 sin α sin β = −2 cos(α − β).

Dividing both sides by -2 we arrive at the Subtraction Formula for Cosine

cos α cos β + sin α sin β = cos(α − β).
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To prove the Addition Formula for Cosine, replace β with −β in the Subtraction
Formula and use the Even and Odd Trigonometric Properties (Definition 1.5.22)
where sin(−β) = − sin β and cos(−β) = cos β to get

cos α cos(−β) + sin α sin(−β) = cos(α − (−β))
cos α cos(β) + sin α(− sin β) = cos(α + β)

cos α cos β − sin α sin β = cos(α + β).

■

Example 3.2.2 Find the exact value of cos 105◦.
Solution. First note that 105◦ = 60◦ + 45◦. Now, using the Addition Formula
for Cosine (Definition 3.2.1),

cos 105◦ = cos(60◦ + 45◦)
= cos 60◦ cos 45◦ − sin 60◦ sin 45◦

= 1
2 ·

√
2

2 −
√

3
2

√
2

2
= 1

4

(√
2 −

√
6
)

.

□

Example 3.2.3 Find the exact value of cos
(

π
4 − π

6
)
.

Solution. Using the Subtraction Formula for Cosine we get

cos
(π

4 − π

6

)
= cos π

4 cos π

6 + sin π

4 sin π

6

=
√

2
2 ·

√
3

2 +
√

2
2 · 1

2
= 1

4

(√
6 +

√
2
)

.

□

Example 3.2.4 Find the exact value of the expression cos 25◦ cos 35◦ −
sin 25◦ sin 35◦.
Solution. Notice this expression is the Addition Formula for Cosine with
α = 25◦ and β = 35◦. So

cos 25◦ cos 35◦ − sin 25◦ sin 35◦ = cos(25◦ + 35◦) = cos 60◦ = 1
2 .

□

3.2.2 Addition and Subtraction Formulas for Sine
Next we will learn about the addition and subtraction formulas for the sine
function.
Definition 3.2.5 Addition and Subtraction Formulas for Sine.

sin(α + β) = sin α cos β + cos α sin β

sin(α − β) = sin α cos β − cos α sin β

♢
We will prove the Addition Formula for Sine in Example 3.2.10 and the

Subtraction Formula can be established using the Even and Odd Properties
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(Definition 1.5.22).

Example 3.2.6 Given sin α = − 12
13 , with 3π

2 < α < 2π and cos β = − 3
5 , with

π
2 < β < π, find the exact value of sin(α + β).
Solution. The Addition Formula for Sine gives us

sin(α + β) = sin α cos β + cos α sin β.

At this moment, we do not know the exact values of cos α and sin β but we
can compute them.

Given sin α = − 12
13 with 3π

2 < α < 2π and cos β = − 3
5 with π

2 < β < π, we
can draw the following triangles associated with α and β, respectively:

x

y

x

-12
13

α

x

y

-3

y 5

β

Next, using the Pythagorean Theorem, we solve for the missing sides on the
triangles:

x2 + (−12)2 = 132

x + 144 = 169
x2 = 25
x = 5.

Thus we get
cos α = 5

13 .
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Similarly,

(−3)2 + y2 = 52

9 + y2 = 25
y2 = 16
y = 4.

Thus we get
sin β = 4

5 .

We now have all the information needed to proceed.

sin(α + β) = sin α cos β + cos α sin β

=
(

−12
13

) (
−3

5

)
+

(
5
13

) (
4
5

)
= 36

65 + 20
65

= 56
65 .

Notice we did not have to know the values of α or β to do this example. □

3.2.3 Addition and Subtraction Formulas for Tangent
Now we will learn about the addition and subtraction formulas for the tangent
function.
Definition 3.2.7 Addition and Subtraction Formulas for Tangent.

tan(α + β) = tan α + tan β

1 − tan α tan β

tan(α − β) = tan α − tan β

1 + tan α tan β

♢
Proof. Recall that tan θ = sin θ

cos θ as long as cos θ ̸= 0. Using this fact and our
new formulas for the sum of sine and cosine, we get

tan(α + β) = sin(α + β)
cos(α + β)

= sin α cos β + cos α sin β

cos α cos β − sin α sin β

=

sin α cos β + cos α sin β

cos α cos β
cos α cos β − sin α sin β

cos α cos β

=

sin α���cos β

cos α�
��cos β

+ ���cos α sin β

���cos α cos β

�����cos α cos β

�����cos α cos β
− sin α sin β

cos α cos β

=

sin α

cos α
+ sin β

cos β

1 − sin α

cos α

sin β

cos β
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= tan α + tan β

1 − tan α tan β
.

The subtraction formula for tangent can be established using the Even and
Odd Properties (Definition 1.5.22). ■

Example 3.2.8 Find the exact value of tan
( 3π

4 + π
6

)
Solution. Using the Addition Formula for Tangent (Definition 3.2.7), we get

tan
(

3π

4 + π

6

)
=

tan 3π
4 + tan π

6
1 − tan 3π

4 tan π
6

=
(−1) +

√
3

3

1 − (−1) ·
√

3
3

=
−1 +

√
3

3

1 +
√

3
3

=
−3+

√
3

3
3+

√
3

3

= −3 +
√

3
3 +

√
3

.

□

3.2.4 Cofunction Identities
Recall the Cofunction Identities (Definition 1.4.7):

sin θ = cos
(π

2 − θ
)

, cos θ = sin
(π

2 − θ
)

tan θ = cot
(π

2 − θ
)

, cot θ = tan
(π

2 − θ
)

sec θ = csc
(π

2 − θ
)

, csc θ = sec
(π

2 − θ
)

Armed with the knowledge of the subtraction formulas, we can prove the
Cofunction Identities.
Proof. We will prove the Cofunction Identity for sin θ in Example 3.2.9. The
proof for cos θ is given as Exercise 3.2.7.97. The Cofunction Identities for tan θ
and cot θ can be found using the Quotient Identities (Definition 1.4.3); for csc θ
and sec θ can be found using the Reciprocal Identities (Definition 1.4.2). ■

Example 3.2.9 Use the Subtraction Formula for Sine to establish the identity
cos θ = sin

(
π
2 − θ

)
.

Solution. To establish an identity, we will start from one side of the equation
and use properties to end up with the expression on the other side of the
equation. So,

sin
(π

2 − θ
)

= sin
(π

2

)
cos (θ) − cos

(π

2

)
sin (θ)

= 1 · cos (θ) − 0 · sin (θ)
= cos (θ) .

Visually, we have cos θ = x
r = sin

(
π
2 − θ

)
.
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x

yr

θ

π
2 − θ

□

Example 3.2.10 Prove the Addition Formula for Sine

sin(α + β) = sin α cos β + cos α sin β.

Solution. We begin by using the cofunction identity

sin(α + β) = cos
(π

2 − (α + β)
)

= cos
((π

2 − α
)

− β
)

.

By the Subtraction Formula for Cosine:

= cos
((π

2 − α
)

− β
)

= cos
(π

2 − α
)

cos β + sin
(π

2 − α
)

sin β

= sin α cos β + cos α sin β,

in the last step, we use the Cofunction Identity. □

3.2.5 Sums of Sines and Cosines
Sometimes we may come across functions of the form

a sin x + b cos x.

It can often be useful to rewrite this expression as a single trigonometric
function.
Definition 3.2.11 For any real numbers a and b, let θ be an angle in standard
position where P (a, b) is a point on the terminal side of θ. Then

a sin x + b cos x =
√

a2 + b2 sin(x + θ).

♢
Proof. We begin by considering the triangle formed by angle θ and point P (a, b),
shown in Figure 3.2.12. By the Pythagorean Theorem, the hypotenuse of this
triangle, with base a and height b, is

√
a2 + b2. According to Definition 1.4.1,

we have
cos θ = a√

a2 + b2
, sin θ = b√

a2 + b2

or equivalently:

a =
√

a2 + b2 cos θ, b =
√

a2 + b2 sin θ.
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x

y

P (a, b)

√
a2 + b2

a

b

θ

Figure 3.2.12 A triangle is formed by angle θ and point P (a, b).
Therefore, using the addition formula for sine, we get

a sin x + b cos x =
√

a2 + b2 cos θ sin x +
√

a2 + b2 sin θ cos x

=
√

a2 + b2 (cos θ sin x + sin θ cos x)

=
√

a2 + b2 sin(x + θ).

■

Example 3.2.13 Express

−
√

3
2 sin x + 1

2 cos x

in terms of sine only.
Solution. To express the given expression in terms of sine only, we will use
Definition 3.2.11. Considering the point P (a, b) =

(
−

√
3

2 , 1
2

)
, which lies in

Quadrant II, we determine the angle θ. Using either Table 1.5.18 or inverse
trigonometric methods where

tan θ = b

a
=

1
2

−
√

3
2

= − 1√
3

,

we find
θ = 150◦.

Therefore, by Definition 3.2.11, we have:

−
√

3
2 sin x + 1

2 cos x =

√(
−

√
3

2

)2

+
(

1
2

)2
sin(x + 150◦)

=
√

3
4 + 1

4 sin(x + 150◦)

= sin(x + 150◦).

□
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3.2.6 Summary
To review, the addition and subtraction formulas are:

sin(α + β) = sin α cos β + cos α sin β

sin(α − β) = sin α cos β − cos α sin β

cos(α + β) = cos α cos β − sin α sin β

cos(α − β) = cos α cos β + sin α sin β

tan(α + β) = tan α + tan β

1 − tan α tan β

tan(α − β) = tan α − tan β

1 + tan α tan β
.

3.2.7 Exercises

Exercise Group. Use the Addition or Subtraction Formula to find the exact
value of each expression.

1. cos(15◦)
Answer.

√
6+

√
2

4

2. sin(75◦)
Answer.

√
6+

√
2

4

3. sin(195◦)
Answer. −

√
6+

√
2

4

4. tan(165◦)
Answer. 1−

√
3

1+
√

3

5. tan(105◦)
Answer. 1+

√
3

1−
√

3

6. cos(255◦)
Answer. −

√
6+

√
2

4

7. tan
( 5π

12
)

Hint. 5π
12 = π

6 + π
4

Answer. 3+
√

3
3−

√
3

8. sin
( 7π

12
)

Hint. 7π
12 = π

3 + π
4

Answer.
√

6+
√

2
4

9. cos
(

π
12

)
Hint. π

12 = π
3 − π

4

Answer.
√

6+
√

2
4

10. sin
( 13π

12
)

Hint. 13π
12 = 11π

6 − 3π
4

Answer.
√

2−
√

6
4

11. cos
( 17π

12
)

Hint. 17π
12 = 5π

3 − π
4

Answer.
√

2−
√

6
4

12. tan
(
− π

12
)

Hint. − π
12 = π

4 − π
3

Answer. 1−
√

3
1+

√
3

Exercise Group. Use the Addition or Subtraction Formula to find the exact
value of each expression.

13. sin(172◦) cos(68◦) + cos(172◦) sin(68◦)
Answer. −

√
3

2

14. sin(317◦) cos(257◦) − cos(317◦) sin(257◦)
Answer.

√
3

2

15. cos(337◦) cos(22◦) + sin(337◦) sin(22◦)
Answer. 1√

2

16. cos(59◦) cos(211◦) − sin(59◦) sin(211◦)
Answer. 0
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17. tan(85◦)−tan(25◦)
1+tan(85◦) tan(25◦)

Answer.
√

3
18. sin

( 5π
16

)
cos

(
π
16

)
− cos

( 5π
16

)
sin

(
π
16

)
Answer.

√
2

2

19. cos
( 5π

22
)

cos
( 3π

11
)

− sin
( 5π

22
)

sin
( 3π

11
)

Answer. 0

20. tan( π
7 )+tan( 4π

21 )
1−tan( π

7 ) tan( 4π
21 )

Answer.
√

3

Exercise Group. Find the exact value of each expression given:

5 3

α

21

29

β

21. sin(α)
Answer. 3

5

22. cos(α)
Answer. 4

5

23. tan(α)
Answer. 3

4

24. sin(β)
Answer. 20

29

25. cos(β)
Answer. 21

29

26. tan(β)
Answer. 20

21

27. sin(α + β)
Answer. 3

5 · 21
29 + 4

5 · 20
29 = 143

145

28. cos(α + β)
Answer. 4

5 · 21
29 − 3

5 · 20
29 = 24

145

29. tan(α + β)

Answer.
3
4 + 20

21
1− 3

4 · 20
21

= 143
24

30. sin(α − β)
Answer. 3

5 · 21
29 − 4

5 · 20
29 = − 17

145

31. cos(α − β)
Answer. 4

5 · 21
29 + 3

5 · 20
29 = 144

145

32. tan(α − β)

Answer.
3
4 − 20

21
1+ 3

4 · 20
21

= − 17
24

Exercise Group. Find the exact value of each expression given:
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2

√
10

α

2

3

β

33. sin(α)

Answer.
√

6√
10 =

√
3
5

34. cos(α)
Answer. 2√

10

35. tan(α)
Answer.

√
6

2

36. sin(β)
Answer. 3√

13

37. cos(β)
Answer. 2√

13

38. tan(β)
Answer. 3

2

39. sin(α + β)
Answer.

√
6√

10 · 2√
13 + 2√

10 ·
3√
13 = 2

√
6+6√
130

40. cos(α + β)
Answer. 2√

10 · 2√
13 −

√
6√

10 ·
3√
13 = 4−3

√
6√

130

41. tan(α + β)

Answer.
√

6
2 + 3

2

1−
√

6
2 · 3

2
= 2

√
6+6

4−3
√

6

42. sin(α − β)
Answer.

√
6√

10 · 2√
13 − 2√

10 ·
3√
13 = 2

√
6−6√
130

43. cos(α − β)
Answer. 2√

10 · 2√
13 +

√
6√

10 ·
3√
13 = 4+3

√
6√

130

44. tan(α − β)

Answer.
√

6
2 − 3

2

1+
√

6
2 · 3

2
= 2

√
6−6

4+3
√

6

Exercise Group. Find the exact value of each expression given:

5

3

α

7

8

β
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45. sin(α)
Answer. 3√

34

46. cos(α)
Answer. 5√

34

47. tan(α)
Answer. 3

5

48. sin(β)
Answer.

√
15
8

49. cos(β)
Answer. 7

8

50. tan(β)
Answer.

√
15
7

51. sin(α + β)
Answer. 3√

34 · 7
8 + 5√

34 ·
√

15
8 =

21+5
√

15
8

√
34

52. cos(α + β)
Answer. 5√

34 · 7
8 − 3√

34 ·
√

15
8 =

35−3
√

15
8

√
34

53. tan(α + β)

Answer.
3
5 +

√
15
7

1− 3
5 ·

√
15
7

=
21+5

√
15

35−3
√

15

54. sin(α − β)
Answer. 3√

34 · 7
8 − 5√

34 ·
√

15
8 =

21−5
√

15
8

√
34

55. cos(α − β)
Answer. 5√

34 · 7
8 + 3√

34 ·
√

15
8 =

35+3
√

15
8

√
34

56. tan(α − β)

Answer.
3
5 −

√
15
7

1+ 3
5 ·

√
15
7

=
21−5

√
15

35+3
√

15

Exercise Group. Find the exact of each expression given sin α = 20
29 ,

0 < α < π
2 and cos β = 24

25 , 0 < β < π
2

57. cos(α)
Answer. 21

29

58. tan(α)
Answer. 20

21

59. sin(β)
Answer. 7

25

60. tan(β)
Answer. 7

24

61. sin(α + β)
Answer. 627

725

62. sin(α − β)
Answer. 333

725

63. cos(α + β)
Answer. 364

725

64. cos(α − β)
Answer. 644

725

65. tan(α + β)
Answer. 627

364

66. tan(α − β)
Answer. 333

644

Exercise Group. Find the exact value of each expression given tan α = 8
15 ,

π < α < 3π
2 and cos β = − 3

5 , π
2 < β < π

67. sin(α)
Answer. − 8

17

68. cos(α)
Answer. − 15

17

69. sin(β)
Answer. 4

5

70. tan(β)
Answer. − 4

3

71. sin(α + β)
Answer. − 36

85

72. sin(α − β)
Answer. 84

85

73. cos(α + β)
Answer. 77

85

74. cos(α − β)
Answer. 13

85

75. tan(α + β)
Answer. − 36

77

76. tan(α − β)
Answer. 84

13
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Exercise Group. Verify the identity.
77. sin

(
θ + π

2
)

= cos θ 78. sin(θ − π) = − sin θ

79. cos(θ − π) = − cos θ 80. tan(θ − π) = tan θ

81. tan
(

π
4 − θ

)
= 1−tan θ

1+tan θ
82. sin

(
π
2 − θ

)
= sin

(
π
2 + θ

)
83. cos

(
θ + π

3
)

= − sin
(
θ − π

6
)

84. cos(x + y) cos(x − y) =
cos2 x − sin2 y

85. sin(x+y)
cos x cos y = tan x + tan y 86. cot(x − y) = cot x cot y+1

cot y−cot x

87. sin(x + y) − sin(x − y) =
2 cos x sin y

88. cos(x + y) + cos(x − y) =
2 cos x cos y

Exercise Group. Write each expression in terms on sine only. Round your
angles to one decimal.

89. −
√

2
2 sin x −

√
2

2 cos x

Answer. sin(x + 225◦)
90.

√
3

2 sin x − 1
2 cos x

Answer. sin(x + 330◦)

91. 1
2 sin x +

√
3

2 cos x

Answer. sin(x + 60◦)
92. −

√
3

2 sin x − 1
2 cos x

Answer. sin(x + 210◦)
93. 3 sin x + 7 cos x

Answer.
√

58 sin(x + 66.8◦)
94. −5 sin x − 9 cos x

Answer.
√

106 sin(x +
240.9◦)

95. 8 sin x − 2 cos x

Answer.
√

68 sin(x + 346.0◦)
96. −7 sin x + 4 cos x

Answer.
√

65 sin(x + 150.3◦)

97. Use the Subtraction Formula for Cosine to prove the Cofunction Identity
for Sine: sin θ = cos

(
π
2 − θ

)
.
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3.3 Double-Angle and Half-Angle Formulas
Suppose we want to accurately position the Hawaiian Star Compass on the Unit
Circle. In Figure 1.1.4, the house for Manu is located halfway between Hikina
and ‘Ākau, resulting in an angle of 45◦. By applying right triangle trigonometry,
we can determine the exact coordinates of Manu as (cos(45◦), sin(45◦)) =(

1√
2 , 1√

2

)
. However, as we move to the house of ‘Āina, located halfway between

Manu and Hikina, we encounter a problem. The angle for ‘Āina is 22.5◦, which
is not explicitly listed in Table 1.5.18. Therefore, we must resort to a calculator
for numerical approximations.

HIKINA

‘Ā
K

A
U

(cos 0◦, sin 0◦) = (1, 0)

(cos 22.5◦, sin 22.5◦) = (?, ?)

(cos 45◦, sin 45◦) =
(

1√
2 , 1√

2

)

(cos 90◦, sin 90◦) = (0, 1)

‘Āina, 22.5◦

Man
u,

45
◦

In this section, we will learn about the double and half-angle formulas
for trigonometry. These formulas allow us to determine exact trigonometric
function values for angles that are double or half of the common angles. This
will enable us to use our existing knowledge of trigonometric functions at 45◦

and apply the half-angle formulas to obtain exact values at 22.5◦.

3.3.1 Double-Angle Formulas
Recall the addition formula for sine:

sin(α + β) = sin α cos β + cos α sin β. (3.3.1)

Consider the case when the two angles are equal. We will call this angle θ,
so let α = θ and β = θ. Then Eq (3.3.1) becomes

sin(θ + θ) = sin θ cos θ + cos θ sin θ

sin(2θ) = 2 sin θ cos θ.

Thus we obtain a formula for sine of twice the angle θ.

Definition 3.3.1 Double-Angle Formulas.

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

cos 2θ = 1 − 2 sin2 θ

cos 2θ = 2 cos2 θ − 1

tan 2θ = 2 tan θ

1 − tan2 θ
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♢
The proofs for the Double-Angle Formulas for Cosine and Tangent are left

as exercises (Exercise 3.3.4.6-Exercise 3.3.4.9).

Remark 3.3.2 Notice that there are three variations of the double-angle
formula for cosine. All three equations give the correct answer, however, one
version may be more convenient depending on the given information. For
example, if we are given the value of sin θ, it may be easier to select the version
that solely involves sin θ and does not include cos θ.

Example 3.3.3 Given sin θ = − 5
13 and θ lies in Quadrant III, find the exact

value of:

(a) sin(2θ)

Solution. By the double-angle formula, we have sin(2θ) = 2 sin θ cos θ.
We are given the value of sin θ, but we do not have cos θ. To find cos θ, we
will draw the triangle formed from sin θ = − 5

13 where θ lies in Quadrant
III.

x

y

-x

-5
13

θ

Using the Pythagorean Theorem, we can solve the triangle:

x2 + (−5)2 = 132

x2 + 25 = 169
x2 = 144
x = 12.

Thus we have
cos θ = adjacent

hypotenuse = −12
13

and
tan θ = opposite

adjacent = 5
12 .

With this new information, we can use the double-angle formula to find
sin(2θ):

sin(2θ) = 2 sin θ cos θ = 2
(

− 5
13

) (
−12

13

)
= 120

169 .

(b) cos(2θ)
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Solution. To compute cos 2θ, notice there are three different formulas:
cos 2θ = cos2 θ−sin2 θ, cos 2θ = 1−2 sin2 θ, or cos 2θ = 2 cos2 θ−1. Using
any of the three equations will give us the correct answer. However, given
that we know sin θ = − 5

13 , it may be easier to use cos 2θ = 1 − 2 sin2 θ,
since the other two equations require us to know cos θ.
Without having to draw the triangle, we get

cos 2θ = 1 − 2 sin2 θ

= 1 − 2
(

− 5
13

)2

= 1 − 2
(

25
169

)
= 169

169 − 50
169

= 119
169 .

(c) tan(2θ)

Solution. Using the double-angle formula for tangent, we get

tan 2θ = 2 tan θ

1 − tan2 θ

=
2

( 5
12

)
1 −

( 5
12

)2

=
10
12

1 − 25
144

=
10
12

119
144

= 10
12 · 144

119
= 120

119 .

□

Example 3.3.4 Write sin(3θ) in terms of sin θ.
Solution.

sin(3θ) = sin(2θ + θ)
= sin(2θ) cos θ + cos(2θ) sin θ addition formula
= (2 sin θ cos θ) cos θ + (cos2 θ − sin2 θ) sin θ double-angle formula
= 2 sin θ cos2 θ + sin θ cos2 θ − sin3 θ

= 3 sin θ cos2 θ − sin3 θ

= 3 sin θ(1 − sin2 θ) − sin3 θ Pythagorean Identity
= 3 sin θ − 3 sin3 θ − sin3 θ

= 3 sin θ − 4 sin3 θ.

□
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3.3.2 Reducing Powers Formulas
The double-angle formula for cosine expresses a trigonometric function in terms
of the square of another trigonometric function. By rearranging the terms,
we can derive formulas for reducing the powers of sine, cosine, and tangent in
expressions with even powers to terms involving only cosine. These formulas
are particularly useful in calculus.

Definition 3.3.5 Formulas for Reducing Powers.

sin2 θ = 1 − cos(2θ)
2

cos2 θ = 1 + cos(2θ)
2

tan2 θ = 1 − cos(2θ)
1 + cos(2θ)

♢
Proof. To prove the first formula, solve for sin2 θ in the double-angle formula:
cos 2θ = 1 − 2 sin2 θ. The second formula is obtained similarly by solving for
cos2 θ in the formula cos 2θ = 2 cos2 θ − 1. The first two formulas can be used
to obtain the third formula:

tan2 θ = sin2 θ

cos2 θ
=

1 − cos(2θ)
2

1 + cos(2θ)
2

= 1 − cos(2θ)
1 + cos(2θ) .

■

Example 3.3.6 Write sin4 θ as an expression that does not involve powers of
sine or cosine greater than 1.
Solution. We will use the Reducing Powers Formula twice.

sin4 θ = (sin2 θ)2

=
(

1 − cos(2θ)
2

)2
reducing powers

= 1
4

(
1 − 2 cos(2θ) + cos2(2θ)

)
= 1

4

(
1 − 2 cos(2θ) + 1 + cos(4θ)

2

)
reducing powers

= 1
4

(
1 − 2 cos(2θ) + 1

2 + cos(4θ)
2

)
= 1

4

(
3
2 − 4

2 cos(2θ) + 1
2 cos(4θ)

)
= 1

8 (3 − 4 cos(2θ) + cos(4θ)) .

□

3.3.3 Half-Angle Formulas
Another set of useful formulas are the half-angle formulas.
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Definition 3.3.7 Half-Angle Formulas.

sin θ

2 = ±
√

1 − cos θ

2 , cos θ

2 = ±
√

1 + cos θ

2 , tan θ

2 = ±
√

1 − cos θ

1 + cos θ

The choice of the + or - sign depends on the Quadrant in which θ/2 lies. ♢
Proof. We take the square root of both sides of the Formulas for Reducing
Powers (Definition 3.3.5) and halve the angle (θ becomes θ

2 and 2θ becomes θ)
to arrive at our formulas. ■

Example 3.3.8 Locating ‘Āina. We are now ready to revisit the problem
posed at the start of this section where we were asked to determine the exact
coordinates of the house ‘Āina on the Unit Circle.
Solution. We know the coordinates are at

(cos 22.5◦, sin 22.5◦).

To determine the exact value of cos 22.5◦, we use the half-angle formula along
with the known value cos 45◦ = 1√

2 =
√

2
2 :

cos 22.5◦ = cos
(

45
2

)◦

=
√

1 + cos 45◦

2

=

√
1 +

√
2

2
2

=

√
2
2 +

√
2

2
4

=

√
2 +

√
2

4

= 1
2

√
2 +

√
2.

Since the half-angle formula has ±, we check the quadrant. In this case, our
angle is 22.5◦, which is in Quadrant I. Therefore, we choose the positive value.

Finding the exact value of sin 22.5◦ is left for Exercise 3.3.4.1. □

Example 3.3.9 Given sin θ = − 5
13 and θ lies in Quadrant III, find the exact

value of:
(a) sin θ

2

Solution. Notice the Half-Angle Formulas all require us to know cos θ.
Since the given information describes the same triangle as in Example 3.3.3,
we refer to that problem to get cos θ = − 12

13 .
Next, since θ is in Quadrant III, 180◦ < θ < 270◦, dividing by 2 gives us
180◦

2 < θ
2 < 270◦

2 or 90◦ < θ
2 < 135◦. Therefore, we conclude that θ

2 lies
in Quadrant II.
To calculate sin θ

2 , we first note that because θ
2 lies in Quadrant II,

sin θ
2 > 0 so we will choose the positive (+) sign in the Half-Angle

Formula:

sin θ

2 =
√

1 − cos θ

2
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=

√
1 −

(
− 12

13
)

2

=

√
1 + 12

13
2

=

√
13
13 + 12

13
2

=

√
25
13
2

=
√

25
26 .

(b) cos θ
2

Solution. Since θ
2 is in Quadrant II, we know that cos θ

2 < 0 so we will
choose the negative (-) sign in the Half-Angle Formula:

cos θ

2 = −
√

1 + cos θ

2

= −

√
1 +

(
− 12

13
)

2

= −

√
1 − 12

13
2

= −

√
13
13 − 12

13
2

= −

√
1

13
2

= −
√

1
26 .

(c) tan θ
2

Solution. Since θ
2 is in Quadrant II, we know that tan θ

2 < 0 so we will
choose the negative (-) sign in the Half-Angle Formula:

tan θ

2 = −
√

1 − cos θ

1 + cos θ

= −

√
1 −

(
− 12

13
)

1 +
(
− 12

13
)

= −

√
1 + 12

13
1 − 12

13

= −

√
13
13 + 12

13
13
13 − 12

13

= −

√
25
13
1

13
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= −
√

25
13 · 13

1
= −

√
25

= −5.

□
We can derive another formula for tan θ

2 that does not involve ±.

Definition 3.3.10 Half-Angle Formulas for Tangent.

tan θ

2 = ±
√

1 − cos θ

1 + cos θ
= 1 − cos θ

sin θ
= sin θ

1 + cos θ

♢
Proof. We begin by first multiplying both sides of the Sine formula for Reducing
Powers by 2 and halving the angle:

1 − cos θ = 2 sin2
(

θ

2

)
and applying the double-angle formula to:

sin θ = sin
(

2 · θ

2

)
= 2 sin θ

2 cos θ

2 .

By dividing the two preceding results we get

1 − cos θ

sin θ
=

2 sin2 (
θ
2
)

2 sin θ
2 cos θ

2
=

sin θ
2

cos θ
2

= tan θ

2 .

Thus
tan θ

2 = 1 − cos θ

sin θ
.

Similarly, it can be shown that

tan θ

2 = sin θ

1 + cos θ
.

■

Example 3.3.11 Calculate tan θ
2 from Example 3.3.9 using the above formula.

Solution.

tan θ

2 = 1 − cos θ

sin θ
=

1 −
(
− 12

13
)

− 5
13

=
25
13

− 5
13

= 25
13 ·

(
−13

5

)
= −5.

□
Note: We obtained the same result for tan θ

2 as we did in Example 3.3.9.
In this example, we did not have to determine whether tan θ

2 was positive or
negative, however, we need to know the values of both sin θ and cos θ.

3.3.4 Exercises

Exercise Group. The house ‘Āina is located at 22.5◦ = 45◦

2 and the house
Nā Leo is located at 67.5◦ = 135◦

2 . Use the half-angle formulas to evaluate the
exact value of the given expression at each of these houses.
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HIKINA

‘Ā
K

A
U

0◦

11.25◦

22.5◦

33.
75

◦

45
◦

56
.25

◦67
.5

◦

78
.7

5◦90
◦

Lā

‘Āina

Noio
Man

uNā
lan

i

N
ā

Le
oH
ak

a

1. sin(22.5◦)
Answer. 1

2

√
2 −

√
2

2. tan(22.5◦)
Answer.

√
2 − 1

3. sin(67.5◦)
Answer. 1

2

√
2 +

√
2

4. cos(67.5◦)
Answer. 1

2

√
2 −

√
2

5. tan(67.5◦)
Answer.

√
2 + 1

6. Use the Addition Formula, cos(α + β) = cos α cos β − sin α sin β, to prove
the double angle formula for cosine:

cos 2θ = cos2 θ − sin2 θ.
7. Use the Pythagorean Identity (sin2 θ + cos2 θ = 1) and the result from

Exercise 3.3.4.6 to prove

cos 2θ = 1 − 2 sin2 θ.
8. Use the Pythagorean Identity (sin2 θ + cos2 θ = 1) and the result from

Exercise 3.3.4.6 to prove

cos 2θ = 2 cos2 θ − 1.
9. Use the addition formula, tan(α + β) = tan α+tan β

1−tan α tan β , to prove the double
angle formula for tangent:

tan 2θ = 2 tan θ

1 − tan2 θ
.
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Exercise Group. Use the figure below to find the exact values for each of
the following exercises.

12

13 5

θ

10. sin(θ)
Answer. 5

13

11. cos(θ)
Answer. 12

13

12. tan(θ)
Answer. 5

12

13. sin(2θ)
Answer. 120

169

14. cos(2θ)
Answer. 119

169

15. tan(2θ)
Answer. 120

119

16. sin
(

θ
2
)

Answer.
√

1
26

17. cos
(

θ
2
)

Answer.
√

25
26

18. tan
(

θ
2
)

Answer. 1
5

Exercise Group. Use the figure below to find the exact values for each of
the following exercises.

3

5 4

θ

19. sin(θ)
Answer. 4

5

20. cos(θ)
Answer. 3

5

21. tan(θ)
Answer. 4

3

22. sin(2θ)
Answer. 24

25

23. cos(2θ)
Answer. − 7

25

24. tan(2θ)
Answer. − 24

7

25. sin
(

θ
2
)

Answer.
√

1
5

26. cos
(

θ
2
)

Answer.
√

4
5

27. tan
(

θ
2
)

Answer. 1
2

Exercise Group. Find the exact value of each expression given cos θ = − 3
5

and θ is in Quadrant III.
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28. sin(θ)
Answer. − 4

5

29. tan(θ)
Answer. 4

3

30. sin(2θ)
Answer. 24

25

31. cos(2θ)
Answer. − 7

25

32. tan(2θ)
Answer. − 24

7

33. sin
(

θ
2
)

Answer.
√

4
5

34. cos
(

θ
2
)

Answer. −
√

1
5

35. tan
(

θ
2
)

Answer. −2

Exercise Group. Find the exact value of each expression given sin θ = − 8
17

and 270◦ < θ < 360◦.
36. cos(θ)

Answer. 15
17

37. tan(θ)
Answer. − 8

15

38. sin(2θ)
Answer. − 240

289

39. cos(2θ)
Answer. 161

289

40. tan(2θ)
Answer. − 240

161

41. sin
(

θ
2
)

Answer.
√

1
17

42. cos
(

θ
2
)

Answer. −
√

16
17

43. tan
(

θ
2
)

Answer. − 1
4

Exercise Group. Find the exact value of each expression given cos θ = 2
3

and 3π
2 < θ < 2π.

44. sin(θ)
Answer. −

√
5

3

45. tan(θ)
Answer. −

√
5

2

46. sin(2θ)
Answer. − 4

√
5

9

47. cos(2θ)
Answer. − 1

9

48. tan(2θ)
Answer. 4

√
5

49. sin θ
2

Answer.
√

1
6

50. cos θ
2

Answer. −
√

5
6

51. tan θ
2

Answer. −
√

1
5

Exercise Group. Use the Half-Angle Formula to find the exact value of each
of the following

52. tan 157.5◦

Answer. 1 −
√

2
53. sin 75◦

Answer. 1
2

√
2 +

√
3

54. tan 112.5◦

Answer. −1 −
√

2
55. cos 15◦

Answer. 1
2

√
2 +

√
3

56. cos π
8

Answer.
√ √

2+1
2

√
2 =

1
2

√√
2 + 2

57. tan 11π
12

Answer. −2 +
√

3
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58. sin 7π
12

Answer. 1
2

√
2 +

√
3

59. cos 3π
8

Answer.
√ √

2−1
2

√
2 =

1
2

√
−

√
2 + 2

Exercise Group. Write each of the following as expressions that do not
involve powers of sine or cosine greater than 1.

60. cos4 θ

Answer. 3
8 + 1

2 cos(2θ) +
1
8 cos(4θ)

61. sin3(2θ)
Answer. 1

2 sin(2θ) ·
(1 − cos(4θ))

62. sin2 θ cos4 θ

Answer. 1
16 (1 + cos(2θ) −

cos(4θ) − cos(2θ) cos(4θ))

63. sin4 θ cos2 θ

Answer. 1
16 (1 − cos(2θ) −

cos(4θ) + cos(2θ) cos(4θ))

64. Write sin2 θ cos2 θ expressions that does not involve powers of sine or
cosine greater than 1.

(a) Using the Reducing Powers Formula (Definition 3.3.5)

Answer. 1
8 (1 − cos(4θ))

(b) Using the Double Angle Formula (Definition 3.3.1) where sin θ cos θ =
1
2 sin 2θ

Answer. 1
8 (1 − cos(4θ))

65. Find the exact value of sin2(15◦)

(a) Evaluate using the Reducing Powers Formula (Definition 3.3.5)

Answer. 2−
√

3
4

(b) Evaluate using the Half-Angle Formula (Definition 3.3.7)

Answer. 2−
√

3
4

Exercise Group. Use half angle to find the exact deviation for the indicated
angle, θ.

66. 2 Houses (θ = 22.5◦)

120 NM

reference course

deviation

2 Houses=22.5◦

Answer. 60
√

2 −
√

2
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67. 6 Houses (θ = 67.5◦)

12
0

N
M

reference course

deviation

6 Houses=67.5◦

Answer. 60
√

2 +
√

2

Exercise Group. Verify the identity
68. (sin θ + cos θ)2 = 1 + sin(2θ) 69. cos(2θ) = cot θ−tan θ

cot θ+tan θ

70.
(sin2 θ − 1)2 = cos(2θ) + sin4 θ

71. cos2(3θ) − sin2(3θ) = cos(6θ)

72. cos4 θ − sin4 θ = cos(2θ) 73. sin(6θ) = 2 sin(3θ) cos(3θ)

74. cot(2θ) = 1−tan2 θ
2 tan θ

75. csc2 (
θ
2
)

= 2
1−cos θ

76. sec2 (
θ
2
)

= 2
1+cos θ 77. 2 tan θ

1+tan2 θ = sin(2θ)
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3.4 Product-to-Sum and Sum-to-Product Formu-
las

In this section, we will learn how to convert sums of trigonometric functions to
products of trigonometric functions, and vice versa. These techniques provide
us with tools to simplify expressions and solve equations.

3.4.1 Product to Sum Formulas
Definition 3.4.1 Product to Sum Formulas.

sin α cos β = 1
2[sin(α + β) + sin(α − β)]

cos α sin β = 1
2[sin(α + β) − sin(α − β)]

cos α cos β = 1
2[cos(α + β) + cos(α − β)]

sin α sin β = 1
2[cos(α − β) − cos(α + β)]

♢
Proof. We add the addition and subtraction formulas for cosine:

cos(α + β) = cos α cos β − sin α sin β

+ cos(α − β) = cos α cos β + sin α sin β

cos(α + β) + cos(α − β) = 2 cos α cos β.

Dividing both sides by 2, we get

1
2 [cos(α + β) + cos(α − β)] = cos α cos β.

Next, we add the addition and subtraction formulas for sine:

sin(α + β) = sin α cos β + cos α sin β

+ sin(α − β) = sin α cos β − cos α sin β

sin(α + β) + sin(α − β) = 2 sin α cos β.

Dividing both sides by 2, we get

1
2 [sin(α + β) + sin(α − β)] = sin α cos β.

Next, we subtract the addition and subtraction formulas for sine:

sin(α + β) = sin α cos β + cos α sin β

− sin(α − β) = sin α cos β − cos α sin β

sin(α + β) − sin(α − β) = 2 cos α sin β.

Dividing both sides by 2, we get

1
2 [sin(α + β) − sin(α − β)] = cos α sin β.
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Finally, we subtract the addition and subtraction formulas for cosine:

cos(α − β) = cos α cos β + sin α sin β

− cos(α + β) = cos α cos β − sin α sin β

cos(α − β) − cos(α + β) = 2 sin α sin β.

Dividing both sides by 2, we get

1
2 [cos(α − β) − cos(α + β)] = sin α sin β.

■

Example 3.4.2 Express the product of cos(2x) cos(5x) as a sum or difference
of sine and cosine with no products.
Solution. Using the formula we get

cos(2x) cos(5x) = 1
2 [cos(2x + 5x) + cos(2x − 5x)]

= 1
2 [cos(7x) + cos(−3x)].

This satisfies the requirement of expressing the product of cos(2x) cos(5x)
as a sum or difference of sine and cosine with no products. However, we can
simplify it further.

Since cosine is an even function, cos(−3x) = cos(3x). Thus, we can simplify
the expression to:

cos(2x) cos(5x) = 1
2 [cos(7x) + cos(3x)].

□

Example 3.4.3 Express the product of sin(6θ) cos(4θ) as a sum or difference
of sine and cosine with no products.
Solution. Using the formula we get

sin(6θ) cos(4θ) = 1
2 [sin(6θ + 4θ) + sin(6θ − 4θ)]

= 1
2 [sin(10θ) + sin(2θ)].

□

Remark 3.4.4 Negative Angles. In the previous example, both forms
cos(2x) cos(5x) = 1

2 [cos(7x) + cos(−3x)] and cos(2x) cos(5x) = 1
2 [cos(7x) +

cos(3x)] are valid representations of the answer. However, it is more common to
write the form where the angles are positive because it simplifies the expression
and aligns with standard conventions for representing trigonometric identities.
Positive angles are often preferred for clarity and consistency in mathematical
notation. Negative angles can be transformed into positive angles using the
even-odd properties of trigonometric functions (Definition 1.5.22).
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3.4.2 Sum to Product Formulas
Definition 3.4.5 Sum-to-Product Formula.

sin α + sin β = 2 sin
(

α + β

2

)
cos

(
α − β

2

)
sin α − sin β = 2 cos

(
α + β

2

)
sin

(
α − β

2

)
cos α + cos β = 2 cos

(
α + β

2

)
cos

(
α − β

2

)
cos α − cos β = −2 sin

(
α + β

2

)
sin

(
α − β

2

)
♢

Proof. We first let α = u+v
2 and β = u−v

2 . Then

α + β = u + v

2 + u − v

2 = 2u

2 = u

and
α − β = u + v

2 − u − v

2 = 2v

2 = v.

Substituting these values for α, β, α + β, and α − β into the Product-to-Sum
Formulas, we get

sin
(

u + v

2

)
cos

(
u − v

2

)
= 1

2[sin(u) + sin(v)]

cos
(

u + v

2

)
sin

(
u − v

2

)
= 1

2[sin(u) − sin(v)]

cos
(

u + v

2

)
cos

(
u − v

2

)
= 1

2[cos(u) + cos(v)]

sin
(

u + v

2

)
sin

(
u − v

2

)
= 1

2[cos(v) − cos(u)].

Multiplying both sides by 2 and substituting u with α and v with β, we arrive
at the Sum-to-Product Formulas, where we negate the last equation. ■

Example 3.4.6 Express the sum sin(8x) + sin(2x) as a product of sines or
cosines.
Solution. Using the formula we get

sin(8x) + sin(2x) = 2 sin
(

8x + 2x

2

)
cos

(
8x − 2x

2

)
= 2 sin

(
10x

2

)
cos

(
6x

2

)
= 2 sin (5x) cos (3x) .

□

Example 3.4.7 Express the difference cos(3t) − cos(5t) as a product of sines
or cosines.
Solution. Using the formula we get

cos(3t) − cos(5t) = −2 sin
(

3t + 5t

2

)
sin

(
3t − 5t

2

)
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= −2 sin
(

8t

2

)
sin

(
−2t

2

)
= −2 sin (4t) sin (−t)
= 2 sin (4t) sin (t) .

□

3.4.3 Exercises

Exercise Group. Express each product as a sum or difference of sine and
cosine.

1. sin(3x) cos(5x)
Answer. 1

2 [sin(8x) +
sin(−2x)] =
1
2 [sin(8x) − sin(2x)]

2. sin(7t) cos(−2t)
Answer. 1

2 [sin(5t) + sin(9t)]

3. cos(−3t) sin(7t)
Answer. 1

2 [sin(4t) −
sin(−10t)] =
1
2 [sin(4t) + sin(10t)]

4. cos(9θ) sin(6θ)
Answer. 1

2 [sin(15θ) −
sin(3θ)]

5. cos(−4x) cos(6x)
Answer. 1

2 [cos(2x) +
cos(−10x)] =
1
2 [cos(2x) + cos(10x)]

6. cos(2θ) cos(4θ)
Answer. 1

2 [cos(6θ) +
cos(−2θ)] =
1
2 [cos(6θ) + cos(2θ)]

7. sin(−θ) sin(8θ)
Answer. 1

2 [cos(−9θ) −
cos(7θ)] = 1

2 [cos(9θ) − cos(7θ)]

8. sin(6t) sin(−3t)
Answer. 1

2 [cos(9t) − cos(3t)]

Exercise Group. Express each sum or difference as a product.
9. sin(−2θ) + sin(−9θ)

Answer. 2 sin
(
− 11θ

2
)

cos
( 7θ

2
)

=
−2 sin

( 11θ
2

)
cos

( 7θ
2

)
10. sin(5x) + sin(7x)

Answer. 2 sin (6x) cos (−x) =
2 sin (6x) cos (x)

11. sin(4θ) − sin(−7θ)
Answer. 2 cos

(
− 3θ

2
)

sin
( 11θ

2
)

=
2 cos

( 3θ
2

)
sin

( 11θ
2

)
12. sin(3x) − sin(−4x)

Answer. 2 cos
(
− x

2
)

sin
( 7x

2
)

=
2 cos

(
x
2
)

sin
( 7x

2
)

13. cos(8θ) + cos(−5θ)
Answer. 2 cos

( 3θ
2

)
cos

( 13θ
2

) 14. cos(9t) + cos(2t)
Answer. 2 cos

( 11t
2

)
cos

( 7t
2

)
15. cos(6θ) − cos(8θ)

Answer. −2 sin (7θ) sin (−θ) =
2 sin (7θ) sin (θ)

16. cos(6t) − cos(−3t)
Answer. −2 sin

( 9t
2

)
sin

( 3t
2

)
Exercise Group. Find the exact value of each expression.

17. sin(195◦) cos(105◦)

Answer. 1
2

(
−

√
3

2 + 1
) 18. cos(225◦) cos(195◦)

Answer.
√

3
4 + 1

4

19. sin(195◦) − sin(75◦)
Answer. −

√
6

2

20. cos(165◦) − cos(105◦)
Answer. −

√
2

2

21. sin(285◦) + sin(195◦)
Answer. −

√
6

2

22. cos(255◦) + cos(15◦)
Answer.

√
2

2
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Exercise Group. Verify the identity
23. sin θ + sin(3θ) = 4 sin θ cos2 θ

24. cos(3θ) + cos θ = 2
(
cos3 θ − sin2 θ cos θ

)
25. 6 cos(5θ) sin(6θ) = 3 sin(11θ) + 3 sin(θ)

26. sin θ+sin(3θ)
2 sin(2θ) = cos θ

27. cos θ+cos(3θ)
2 cos(2θ) = cos θ

28. cos θ−cos(3θ)
sin θ+sin(3θ) = tan θ
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3.5 Basic Trigonometric Equations
Trigonometric equations are equations involving trigonometric functions
such as sine, cosine, and tangent. These equations seek to find specific values,
known as solutions, that satisfy the equation.

Trigonometric functions are inherently periodic, meaning they repeat their
values at regular intervals. As a result, trigonometric equations may have
multiple solutions due to this periodic nature. In fact, some equations may
have infinitely many solutions.

To address all possible solutions, we use a technique known as a general
solution. This method involves initially identifying solutions within a single
period of the trigonometric function. We then extend these solutions by adding
integer multiples of the period of the trigonometric function.

In this section, we will explore various techniques for effectively solving
trigonometric equations, including methods for finding general solutions.

3.5.1 Solving Equations with a Single Trigonometric Func-
tion

Example 3.5.1 Solve the equation

sin θ = 1
2 .

Solution. To solve the equation sin θ = 1
2 , our initial instinct might lead us

to take the inverse sine of both sides:

sin−1 (sin θ) = sin−1
(

1
2

)
resulting in

θ = π

6 .

While this is a valid solution, it’s important to recognize that there are additional
solutions to consider.

Since the sine function is positive in both Quadrant I and Quadrant II, we
can find another solution in Quadrant II by using the reference angle π

6 and
the methods described in Subsection 1.5.2. Therefore, the equivalent angle in
Quadrant II is θ = π − π

6 = 5π
6 .

x

y

5π
6

π
6

However, these two angles, θ = π
6 or θ = 5π

6 , are not the only solutions.
Recall that the sine function has a period of 2π, meaning that adding or
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subtracting any integer multiples of 2π to these angles will also give us solutions.
For example, θ = π

6 + 4π and θ = 5π
6 − 10π are both solutions.

− 11π
6 − 7π

6
π
6

5π
6

13π
6

17π
6

−1

−0.5

0.5

1

x

y

Thus, the general solution to sin θ = 1
2 can be expressed as:

θ = π

6 + 2kπ or θ = 5π

6 + 2kπ,

where k is any integer. □

Example 3.5.2 Solve the equation 2 cos θ +
√

2 = 0. List six solutions.
Solution. First we will isolate cos θ.

2 cos θ +
√

2 = 0
2 cos θ = −

√
2

cos θ = −
√

2
2 .

Thus we have the general solution θ = 3π
4 + 2kπ or θ = 5π

4 + 2kπ for any
integer k.

To get specific solutions, we select specific values of k:

k = −1 :θ = 3π

4 + 2(−1)π = −5π

4 , θ = 5π

4 + 2(−1)π = −3π

4
k = 0 :θ = 3π

4 + 2(0)π = 3π

4 , θ = 5π

4 + 2(0)π = 5π

4
k = 1 :θ = 3π

4 + 2(1)π = 11π

4 , θ = 5π

4 + 2(1)π = 13π

4

□
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3.5.2 Solving Trigonometric Equations with Square Terms

Example 3.5.3 Solve cos2 θ = 1
2 on the interval 0 ≤ θ < 2π.

Solution. We will first solve for cos θ. We begin by taking the square root of
both sides of the equation and simplify:

√
cos2 θ = ±

√
1
2

cos θ ± 1√
2

From Table 1.5.18, when cos θ = 1√
2 , we have θ = π

4 or θ = 7π
4 ; and when

cos θ = − 1√
2 , we have θ = 3π

4 or θ = 5π
4 .

Thus, our solutions are:

θ = π

4 ,
3π

4 ,
5π

4 ,
7π

4 .

□

3.5.3 Solving Trigonometric Equations by Factoring
Example 3.5.4 Solve cos2 x − 4 cos x + 3 = 0.
Solution. To solve this equation, let’s make a substitution to simplify it.
We’ll let y = cos x, so the equation becomes y2 − 4y + 3 = 0.

Factoring the quadratic equation, we obtain (y − 3)(y − 1) = 0. Setting each
factor equal to zero, we find two potential solutions: y = 3 or y = 1. We are
not done because we need to solve for x and not y.

Substituting back cos x for y, we find that cos x = 3 is not a valid solution,
as the range of cosine is limited to [-1, 1]. However, cos x = 1 yields a solution
of x = 0 for one period.

Therefore, the general solution to the equation is:

x = 0 + 2kπ = 2kπ,

where k is any integer. □

Example 3.5.5 Solve 2 cos θ sin θ +
√

3 cos θ = 0.
Solution. We begin by factoring cos θ:

2 cos θ sin θ +
√

3 cos θ = 0
cos θ(2 sin θ +

√
3) = 0.

Thus we get two equations: cos θ = 0 and 2 sin θ +
√

3 = 0.
From cos θ = 0 we get θ = π

2 or θ = 3π
2 .

From the second equation, we isolate sin θ:
2 sin θ +

√
3 = 0

2 sin θ = −
√

3

sin θ = −
√

3
2 .

Thus we get θ = 4π
3 or θ = 5π

3 .
We get the general solutions by adding integer multiples of 2π to get

θ = π

2 + 2kπ, θ = 3π

2 + 2kπ, θ = 4π

3 + 2kπ, θ = 5π

3 + 2kπ
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where k is any integer. □

3.5.4 Solving a Trigonometric Equation with a Calculator
Example 3.5.6 Use a calculator to solve 3 tan θ = 2 on the interval 0 ≤ θ < 2π.
Express the answer in radians, rounded to two decimals.
Solution. We begin by isolating tan θ :

tan θ = 2
3

Next, we take the inverse tangent and use a calculator to obtain

θ = tan−1
(

2
3

)
≈ 0.588002603548.

Rounding to two decimals, we get θ = 0.59 radians, which is in Quadrant I
since 0 < 0.59 < π

2 . Another angle where tan θ = 2
3 is in Quadrant III. Using

the methods in Subsection 1.5.2 we get the other angle: θ = 0.59 + π. □

3.5.5 Exercises

Exercise Group. Solve each equation on the interval 0 ≤ θ < 2π

1. sin θ =
√

3
2

Answer. π
3 , 2π

3

2. tan θ = −1
Answer. 3π

4 , 7π
4

3. cot θ = −
√

3
Answer. 5π

6 , 11π
6

4. csc θ = 2
Answer. π

6 , 5π
6

5. sec θ = −2
Answer. 2π

3 , 4π
3

6. cos θ = 1√
2

Answer. π
4 , 7π

4

7. csc θ +
√

2 = 0
Answer. 5π

4 , 7π
4

8. 6 cos θ + 1 = −2
Answer. 2π

3 , 4π
3

9. 2 tan θ + 2
√

3 = 0
Answer. 2π

3 , 5π
3

10. 2 cot θ + 8 = 6
Answer. 3π

4 , 7π
4

11. 2 sin θ + 1 = 0
Answer. 7π

6 , 11π
6

12. sec θ −
√

2 = 0
Answer. π

4 , 7π
4

Exercise Group. Solve each equation, giving the general formula for each
solution. List six specific solutions.

13. sin θ = − 1√
2

Answer. 5π
4 + 2kπ,

7π
4 + 2kπ; − 3π

4 , − π
4 , 5π

4 , 7π
4 ,

13π
4 , 15π

4

14. cos θ = 1
2

Answer. π
3 + 2kπ, 5π

3 + 2kπ;
− 5π

3 , − π
3 , π

3 , 5π
3 , 7π

3 , 11π
3

15. tan θ = −1
Answer. 3π

4 + kπ; − 5π
4 , − π

4 ,
3π
4 , 7π

4 , 11π
4 , 15π

4

16. cot θ = −
√

3
Answer. 5π

6 + kπ; − π
6 , 5π

6 ,
11π

6 , 17π
6 , 23π

6 , 29π
6

Exercise Group. Solve each equation on the interval 0 ≤ θ < 2π. Express
your answer in radians, rounded to two decimals.
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17. sin θ = −0.82
Answer. 4.10, 5.32

18. cos θ = 0.3
Answer. 1.27, 5.02

19. tan θ = 2.5
Answer. 1.19, 4.33

20. cot θ = −5
Answer. 2.94, 6.09

Exercise Group. Solve each equation on the interval 0 ≤ θ < 2π.
21. 4 cos2 θ − 3 = 0

Answer. π
6 , 5π

6 , 7π
6 , 11π

6

22. 3 csc2 θ − 4 = 0
Answer. π

3 , 2π
3 , 4π

3 , 5π
3

23. tan2 θ − 1 = 0
Answer. π

4 , 3π
4 , 5π

4 , 7π
4

24. 2 cot2 θ − 6 = 0
Answer. π

6 , 5π
6 , 7π

6 , 11π
6

25. sec2 θ − 4 = 0
Answer. π

3 , 2π
3 , 4π

3 , 5π
3

26. 2 cos2 θ − 1 = 0
Answer. π

4 , 3π
4 , 5π

4 , 7π
4

27. (2 cos θ − 1)(csc θ + 2) = 0
Answer. π

3 , 7π
6 , 5π

3 , 11π
6

28. (tan θ −
√

3)(cot θ + 1) = 0
Answer. π

3 , 3π
4 , 4π

3 , 7π
4

29. 4 sin2 θ − 2 sin θ = 0
Answer. 0, π

6 , 5π
6 , π

30. 2 cos2 θ −
√

3 cos θ = 0
Answer. π

6 , π
2 , 3π

2 , 11π
6

31. sin3 θ − sin θ = 0
Solution. 0, π

2 , π, 3π
2

32. 2 cos2 θ + cos θ − 1 = 0
Answer. π

3 , π, 5π
3

33. 2 sin2 θ − 7 sin θ + 3 = 0
Answer. π

6 , 5π
6

34. 3 tan3 θ − tan θ = 0
Answer. 0, π

6 , 5π
6 , π, 7π

6 , 11π
6

35. cos2 θ + 2 cos θ + 1 = 0
Answer. π

36. csc5 θ − 4 csc θ = 0
Answer. π

4 , 3π
4 , 5π

4 , 7π
4

37. 2 sin2 θ − 3 sin θ − 2 = 0
Answer. 7π

6 , 11π
6

38. 2 cos2 θ − 3 cos θ + 1 = 0
Answer. 0, π

3 , 5π
3
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3.6 Trigonometric Equations - Advanced Tech-
niques

In this section, we will solve trigonometric equations using various trigonometric
identities, equations involving multiple angles, and graphical methods.

3.6.1 Solving a Trigonometric Equation by Using Funda-
mental Identities

Example 3.6.1 Solve 2 sin2 x + 3 cos x − 3 = 0.
Solution. To solve the equation 2 sin2 x + 3 cos x − 3 = 0, we want to first
write it in terms of only cosine or only sine. By the Pythagorean Identity, we
substitute sin2 x = 1 − cos2 x, resulting in:

2 sin2 x + 3 cos x − 3 = 0
2(1 − cos2 x) + 3 cos x − 3 = 0

2 − 2 cos2 x + 3 cos x − 3 = 0
−2 cos2 x + 3 cos x − 1 = 0

2 cos2 x − 3 cos x + 1 = 0
(2 cos x − 1)(cos x − 1) = 0.

Thus cos x = 1
2 or cos x = 1.

Solving for x in the first equation gives x = π
3 or 5π

3 , while the second
equations gives x = 0 for one period. Finding all solutions, we arrive at
x = π

3 + 2kπ, 5π
3 + 2kπ, or x = 0 + 2kπ = 2kπ for any integer k. □

Remark 3.6.2 If factoring trigonometric functions is difficult, we can try
substituting a simpler term and then factor. For example, consider the expres-
sion 2 cos2 x − 3 cos x + 1 in the previous example. If factoring this expression
directly is not clear, we can use the substitution A = cos x. This transforms
the expression into 2A2 − 3A + 1, which may be easier to factor. Once factored,
we can substitute cos x back in for A to obtain the final solution.
Example 3.6.3 Solve the equation sin(2θ) + cos θ = 0 on the interval 0 ≤ θ <
2π.
Solution. Notice the first term has 2θ so we will begin by using the double-
angle formula:

sin(2θ) + cos θ = 0
2 sin θ cos θ + cos θ = 0.

Then we factor cos θ from the terms:

cos θ(2 sin θ + 1) = 0.

Thus we get
cos θ = 0 or 2 sin θ + 1 = 0.

When cos θ = 0 we get θ = π
2 , 3π

2 .
When 2 sin θ + 1 = 0, sin θ = − 1

2 , thus θ = 7π
6 , 11π

6 .
Combining these, the solutions are

θ = π

2 ,
3π

2 ,
7π

6 ,
11π

6 .

□
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3.6.2 Solving a Trigonometric Equation with Multiples of
an Angle

Example 3.6.4 Solve the equation 2 cos(2θ) −
√

3 = 0 on the interval 0 ≤ θ <
2π.
Solution. First we will isolate cos(2θ). We begin by rearranging the equation:

2 cos(2θ) −
√

3 = 0
2 cos(2θ) =

√
3

cos(2θ) =
√

3
2 .

Since cos(2θ) equals
√

3
2 for angles π

6 and 11π
6 , the general solutions for 2θ

are
2θ = π

6 + 2kπ or 2θ = 11π

6 + 2kπ

for any integer k.
Note that we have only solved for 2θ. Dividing both sides by 2 to find θ, we

obtain:
θ = π

12 + kπ or θ = 11π

12 + kπ.

The restriction 0 ≤ θ < 2π gives us the following solutions:

π

12 ,
11π

12 ,
13π

12 ,
23π

12 .

□

Remark 3.6.5 In this example, our angle was a double-angle: 2θ. When dealing
with multiple-angle trigonometric functions, such as cos(2θ), it’s essential to
understand their graphical behavior. According to Definition 2.1.28, the graph
of cos(2θ) undergoes a horizontal compression by a factor of 2, and its period
is 2π

2 = π. Since we are asked to find solutions on the interval 0 ≤ θ < 2π, we
will need to consider two periods. Thus, we have four solutions (2 solutions for
each period):

π

12 ,
11π

12 ,
13π

12 ,
23π

12 .

In general, if the trigonometric function has an angle kθ, for some number
k, we will need to consider the effect of this multiple angle on the period and
number of solutions, ensuring that we adjust our solutions accordingly to cover
all possible solutions within the given interval.

Example 3.6.6 Solve the equation 3 tan θ
2 −

√
3 = 0 on the interval 0 ≤ θ < 2π.

Solution. We begin by isolating tan θ
2 :

3 tan θ

2 −
√

3 = 0

3 tan θ

2 =
√

3

tan θ

2 =
√

3
3 .

Since tan θ
2 equals

√
3

3 for angles π
6 and 7π

6 , the general solutions for θ
2 are

θ

2 = π

6 + kπ and θ

2 = 7π

6 + kπ
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for any integer k.
Solving for θ, we multiply both sides by 2 to obtain:

θ = π

3 + 2kπ and θ = 7π

3 + 2kπ.

Considering our restriction 0 ≤ θ < 2π, we have only one solution:

θ = π

3 .

□

Remark 3.6.7 In this example, the angle was θ
2 , which stretches the graph of

the tangent function. When we have an angle of the form θ
2 , it stretches the

period of the tangent function by a factor of 2. Thus, for the given interval, we
have only half a period to consider instead of the full period.

3.6.3 Solving a Trigonometric Equation with a Graphing
Utility

Sometimes we will encounter equations where an exact solution is not possible.
However, we may be able to get an approximation to the solution by graphing
the equation.

Example 3.6.8 Use a graphing utility to find the solutions to the equation
sin x + cos x = 1

2 x. Express the answers in radians, rounded to two decimals.
Solution. To find the solution to sin x + cos x = 1

2 x, we graph the left-hand
side and the right-hand side of the equation and identify their intersections.
Let y1 represent the curve for the left-hand side and y2 represent the curve for
the right-hand side:

y1 = sin x + cos x, y2 = 1
2x.

Use a graphing utility to plot y1 and y2.

Standalone
Figure 3.6.9 Plotting y1 = sin x + cos x and y2 = 1

2 x, corresponding to the
left-hand and right-hand sides of the equation, respectively. If you are viewing
the PDF or a printed copy, you can scan the QR code or follow the “Standalone”
link to explore the interactive version online.

Next, we may need to zoom in or out to better visualize the behavior of the
curves. To find their intersection points, calculators often have a TRACE or
INTERSECT button or command. In Desmos Graphing Calculator1 we can click
on either curve, and the points of intersection will be highlighted. Hovering the
cursor over the intersection will display the coordinates of that point.

The equation sin x + cos x = 1
2 x has three solutions, which correspond to

the points of intersection between the curves y1 = sin x + cos x and y2 = 1
2 x.

The x-values of these intersections are

x = −2.68, −1.24, 1.71.

https://www.kamuelayong.com/trigonometry/desmos-solving-trig-eqn-graphing.html
https://www.desmos.com/calculator
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□

3.6.4 Exercises

Exercise Group. Solve each equation on the interval 0 ≤ θ < 2π.
1. sin2 θ − cos2 θ = 0

Answer. π
4 , 3π

4 , 5π
4 , 7π

4

2. cos2 θ − sin2 θ = 1 + sin θ

Answer. 0, π, 7π
6 , 11π

6

3. 3 cot2 θ − 4 csc θ = 1
Answer. π

6 , 5π
6

4. sin2 θ = 5 cos θ + 5
Answer. π

5. cos2 θ = 3 − 3 sin θ

Answer. π
2

6. 2 sin2 θ = 3 cos θ + 3
Answer. 2π

3 , π, 4π
3

Trigonometric Equations Involving Multiples of an Angle. Solve the
given trigonometric equation on the interval 0 ≤ θ < 2π.

7. cot 2θ = −
√

3
Answer. 5π

12 , 11π
12 , 17π

12 , 23π
12

8. sin 4θ =
√

3
2

Answer. π
12 , π

6 , 7π
12 , 2π

3 , 13π
12 , 7π

6 , 19π
12 , 5π

3

9.
√

2 cos 2θ = 1
Answer. π

8 , 7π
8 , 9π

8 , 15π
8

10. csc 3θ = 2
Answer. π

18 , 5π
18 , 13π

18 , 17π
18 , 25π

18 , 29π
18

11. sec 3θ
2 = −

√
2

Answer. π
2 , 5π

6 , 11π
6

12. cos θ
2 − 1 = 0

Answer. 0

Trigonometric Equations Involving Addition or Subtraction Formula.
Use the Addition and Subtraction Formulas to solve each equation on the
interval 0 ≤ θ < 2π.

13. sin θ cos 2θ + cos θ sin 2θ =
√

3
2

Answer. π
9 , 2π

9 , 7π
9 , 8π

9 , 13π
9 , 14π

9

14. sin 3θ cos 2θ − cos 3θ sin 2θ = − 1
2

Answer. 7π
6 , 11π

6

15. cos 3θ cos θ + sin 3θ sin θ = −
√

2
2

Answer. 3π
8 , 5π

8 , 11π
8 , 13π

8

16. cos θ cos 3θ − sin θ sin 3θ = 1
Answer. 0, π

2 , π, 3π
2

Trigonometric Equations Involving Double-Angle or Half-Angle For-
mula. Use the Double-Angle and Half-Angle Formulas to solve each equation
on the interval 0 ≤ θ < 2π.

17. sin 2θ = cos θ

Answer. π
6 , π

2 , 5π
6 , 3π

2

18. cos 2θ = cos θ

Answer. 0, 2π
3 , 4π

3
19. cos 2θ + cos θ − 2 = 0

Answer. 0
20. tan 2θ = −2 sin θ

Answer. 0, π
3 , π, 5π

3

21. cos 2θ + 2 = 2 sin2 θ

Answer. π
3 , 2π

3 , 4π
3 , 5π

3

22. tan θ
2 = sin θ

Answer. 0, π
2 , 3π

2

1DesmosGraphingCalculator
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Trigonometric Equations Involving Sum-to-Product Formula. Use the
Sum-to-Product Formulas to solve each equation on the interval 0 ≤ θ < 2π.

23. sin 3θ + sin θ = 0
Answer. 0, π

2 , π, 3π
2

24. sin 6θ − sin 2θ = cos 4θ

Answer. π
12 , π

8 , 3π
8 , 5π

12 , 5π
8 , 7π

8 , 13π
12 , 9π

8 , 11π
8 , 17π

12 , 13π
8 , 15π

8
25. cos 4θ − cos 2θ = 0

Solution. 0, π
3 , 2π

3 , π, 4π
3 , 5π

3

26. cos 3θ + cos θ = 0
Solution. π

4 , π
2 , 3π

4 , 5π
4 , 3π

2 , 7π
4

Exercise Group. Use a graphing utility to solve each equation. Express
your solutions in radians, rounded to two decimals.

27. sin(2x) = 4 cos x + x

Answer. x =
−1.34, 2.63, 3.90

28. sin x − x = cos x

Answer. x = −1.26

29. x2 = cos x

Answer. x = −0.82, 0.82
30. x3 + 2x2 = cos(2x)

Answer. x =
−2.11, −0.56, 0.48



Chapter 4

Applications of Trigonome-
try

4.1 The Law of Sines
Recall Example 2.4.18 in Section 2.4 where Alingano Maisu is sailing to her
new home in Satawal. For the first leg of the voyage, we calculated that to sail
from Johnston Atoll to Majuro, we would need to head towards House ‘Āina
Kona (27.4◦). However, in reality, currents can push the wa‘a off course. Let’s
consider a scenario where a current of 1 knot is flowing in the direction of the
house Komohana (West). If we were to face Majuro and sail straight, the current
would push us to the west of our destination. To ensure we arrive at Majuro,
our apparent heading will need to be adjusted accordingly, as illustrated below.

Majuro

Johnston Atoll

actual course

appare
nt head

ing

current

27.4◦

C

B

A

Now, suppose we sail at 5 knots. What heading should we aim for to
compensate for a 1-knot current? We note that by alternate interior angles,
A = 27.4◦. Let’s represent this situation with a triangle where the sides
represent speed of the wa‘a and the current, allowing us to disregard the
distance traveled.

224
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b

a = 5

c = 1

C

A = 27.4◦ B

It’s important to note that this triangle is not a right triangle; instead, it’s
classified as an oblique triangle, meaning it does not have any right angles.
Triangles can be further categorized as either obtuse or acute. An obtuse
triangle contains one angle greater than 90◦, while an acute triangle consists
of all angles less than 90◦. Solving such triangles requires different methods
than those used for solving the right triangle in previous chapters. In this
chapter, we’ll learn techniques for solving oblique triangles, starting with the
Law of Sines and the Law of Cosines.

To solve an oblique triangle, we need to be given three pieces of information,
which can take the following forms:

1. One side and two angles.

• Angle-Side-Angle (ASA): Two angles and the side between them are
known.

S

A
A

• Side-Angle-Angle (SAA): Two angles and a side that is not between
them are known.

S

A
A
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2. Two sides and one angle.

• Side-Side-Angle (SSA): Two sides and the angle that is not between
them are known.

S S

A

• Side-Angle-Side (SAS): Two sides and the angle between them are
known.

S

S

A

3. Three sides.

• Side-Side-Side (SSS): All three sides of the triangle are known.

S S

S

In this section, we explore techniques for solving triangles when provided
with one side and two angles (ASA or SAA) and when given two sides along
with the angle not between them (SSA). Triangles falling under the categories
of SAS and SSS will be discussed in more detail in the Section 4.2.

4.1.1 Law of Sines
The Law of Sines states that for any triangle, the ratios of the lengths of
the sides to the sine of their corresponding opposite angles are equal. When
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provided with certain information about the sides and angles of a triangle, this
fundamental principle becomes a valuable tool for determining the remaining
sides and angles.

Theorem 4.1.1 Law of Sines. In triangle ABC, we have

sin A

a
= sin B

b
= sin C

c
.

which may also be written in the form

a

sin A
= b

sin B
= c

sin C
.

The first form is more convenient when we are trying to find an angle and
the second form is more convenient when we are trying to find a side.
Proof. In any triangle, we can draw an altitude, a line through a vertex and
perpendicular to the side opposite the vertex.

b a

cA

C

B

h

Using the right triangles, we have sin A = h
b and sin B = h

a . Solving both
equations for h, we get h = b sin A and h = a sin B. Since these equations both
equal h, we can set them equal to each other:

b sin A = a sin B.

Dividing both sides by ab, we get

sin A

a
= sin B

b
.

Using the same method, we can get:

sin A

a
= sin C

c
and sin B

b
= sin C

c
.

Putting these together, we get

sin A

a
= sin B

b
= sin C

c
.

■

Remark 4.1.2 When solving triangles, it is often useful to use the fact that
the sum of the angles in a triangle equals 180◦. That is,

A + B + C = 180◦.



CHAPTER 4. APPLICATIONS OF TRIGONOMETRY 228

4.1.2 Solving ASA Triangles
Example 4.1.3 Using Law of Sines (ASA). The wa‘a Kānehūnāmoku
is returning from a morning sail, training students in the ways of sailing.
Two observers standing 1,000 feet apart on the shore at Kāne‘ohe Bay spot
Kānehūnāmoku. Observer A determines that the angle between the wa‘a and
Observer B is 80◦ while Observer B determines that the angle between the
wa‘a and Observer A is 60◦. How far is Kānehūnāmoku from each observer and
what is the angle formed by the two observers (round the answer to the nearest
foot)?

c = 1, 000

b a

A B

C

80◦ 60◦

Solution. In this triangle, we know the values of two angles and the side
between them, so we have an Angle-Side-Angle (ASA) triangle. We know that
A + B + C = 180◦. So 80◦ + 60◦ + C = 140◦ + C = 180◦ so C = 40◦. To solve
for a, we will use the Law of Sines. Either form for the Law of Sines can be
used to solve this problem, but since we are solving for a side, it would be easier
and require fewer steps if we use the second form for the Law of Sines.

a

sin A
= c

sin C
a

sin 80◦ = 1, 000
sin 40◦

Multiplying both sides by sin 80◦,

a = 1, 000 sin 80◦

sin 40◦ ≈ 1, 532 ft.

To solve for b, we have two options to use for the Law of Sines:

b

sin B
= a

sin A
or b

sin B
= c

sin C
.
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Because our answer for a was rounded, using the first option may lead to
rounding errors so it is best to use the second option because it has known
values that we were originally given in the problem (c = 1, 000). Thus we will
use

b

sin B
= c

sin C
.

So we get
b = c sin B

sin C
= 1, 000 sin 60◦

sin 40◦ ≈ 1, 347 ft.

Thus Kānehūnāmoku is 1,347 feet from Observer A and 1,532 feet from
Observer B, and the angle between the two observers is 40◦. □

4.1.3 Solving SAA Triangles
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Example 4.1.4 Using Law of Sines (SAA). For the triangle shown below
with A = 120◦, C = 20◦, and a = 5, find the remaining sides. Round the answer
to two decimal places.

c

b
a = 5

C

A B

120◦

20◦

Solution. In this triangle, we know the values of two angles and the side
between them, so we have a Side-Angle-Angle (SAA) triangle. The third angle
can be calculated by subtracting the known angles from 180◦:

B = 180◦ − A − C = 180◦ − 120◦ − 20◦ = 40◦.

By using the first form of the Law of Sines

b

sin B
= a

sin A
and c

sin C
= a

sin A

we have
b = a sin B

sin A
= 5 sin 40◦

sin 120◦ ≈ 3.71

and
c = a sin C

sin A
= 5 sin 20◦

sin 120◦ ≈ 1.97.

□

4.1.4 Solving SSA Triangles: The Ambiguous Case
Although the Law of Sines can be used to solve oblique triangles, there may be
cases that would give us one triangle, two triangles, or even no solution. Such
cases are known as the ambiguous case. This occurs when we know two sides
and an angle that is opposite to one of the given sides.

Definition 4.1.5 The Ambiguous Case. Consider a triangle where a, b,
and A are given. The altitude is h = b sin A. We have the following possibilities:

1. A is acute and a < h = b sin A: No triangle
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b

A

C

h

a

2. A is acute and a = h = b sin A: One right triangle

b

A

C

h = a

B
3. A is acute and h = b sin A < a < b: Two triangles (△AB1C1 and

△AB2C2)
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b

A

C

ha2 a1

B2 B1

b

A

C1

h a1

B1

b

A

C2

ha2

B2

4. A is acute and a ≥ b: One triangle

b

A

C

h a

B

5. A is obtuse and a ≤ b: No triangle
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b

A

C

a

6. A is obtuse and a > b: One triangle

b

A

C

a

B

♢

Remark 4.1.6 Generalizing the Ambiguous Case. Not every time
we encounter a SSA triangle will we be given the angle A and sides a and b.
Sometimes we may be given angle B and sides a and b. In these cases, we
cannot use the equations and inequalities listed above to identify how many
triangles we will get.

To generalize the ambiguous case of SSA, we are given a triangle with:

1. a known angle, θ;

2. a side adjacent to θ;

3. a side opposite to θ.

ad
jac

en
t sid

e opposite side
θ

altitude
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If we calculate the altitude h = (adjacent side) · sin θ, then Table 4.1.7
summarizes the possible cases.

Table 4.1.7 Possibilities for the ambiguous case (SSA)

Case θ Condition on Opposite Side Number of Triangles
1 acute opposite side < altitude None
2 acute opposite side = altitude One (right triangle)
3 acute altitude < opposite side < adjacent side Two
4 acute opposite side ≥ adjacent side One
5 obtuse opposite side ≤ adjacent side None
6 obtuse opposite side > adjacent side One

Example 4.1.8 Using Law of Sines (SSA) one-solution. We can now
return to the example at the start of the section where the Alingano Maisu
must account for a current and we had the following triangle:

b

a = 5

c = 1

C

A = 27.4◦ B

Which house do we need to sail into to account for the current?
Solution. Referring to Table 4.1.7, our known angle (A = 27.4◦) is acute, the
side opposite of our angle (a = 5) is greater than the side adjacent to the angle
(c = 1) so we have Case 4 and know that we have one triangle.

Using the first form of the Law of Sines

sin A

a
= sin C

c

we get
sin C = c · sin A

a
≈ 1 · sin 27.4◦

5 ≈ 0.092.

Taking the inverse sine we get

C = sin−1 0.092 ≈ 5.3◦.

Now that we know the value of C, we will need to add that to the heading
that we determined in the last section (207.4◦) to get 5.3◦ + 207.4◦ = 212.7◦.
Next we refer to the Star Compass with angles (Figure 1.2.4) to conclude we
will need to sail towards the House Noio Kona. □

Example 4.1.9 Using Law of Sines (SSA) no solution. Solve the triangle
if C = 70◦, b = 6, and c = 5.
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Solution. The altitude of the triangle is h = b sin C = 6 sin 70◦ ≈ 5.64. Since
C is an acute angle and the altitude (h ≈ 5.64) is greater than the side opposite
of the angle (c = 5), we have Case 1 of Table 4.1.7, thus there is no triangle.

b

C

A

h
c

□

Example 4.1.10 Using Law of Sines (SSA) two solutions. Solve the
triangle if a = 6, b = 7, and A = 40◦.
Solution. The altitude of the triangle is h = b sin A = 7 sin 40◦ ≈ 4.50. Since
A is an acute angle and the altitude (h ≈ 4.50) is less than the opposite side
(a = 6) which is less than the adjacent side (b = 7), this satisfies Case 3 of
Table 4.1.7, thus there are two triangles.

b

A

C

ha2 a1

B2 B1

Using the first form for the Law of Sines

sin A

a
= sin B

b
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we get
sin B = b sin A

a
= 7 sin 40◦

6 ≈ 0.75.

Here we have that sin B is positive and we know that sine is positive in
Quadrant I and II so our value for B is between 0◦ and 180◦. Taking the inverse
sine we get our first angle

B1 = sin−1(0.75) ≈ 48.58◦,

which is in Quadrant I. To calculate the angle in Quadrant II, we subtract the
reference angle from 180◦ to get

B2 = 180◦ − B1 = 180◦ − 48.58◦ = 131.42◦.

So we now have two triangles: AB1C1 and AB2C2.

c1

b

A

C1

a1

B1

c2

b

A

C2

a2

B2

To solve triangle AB1C1, be begin by finding C1:

C1 ≈ 180◦ − A − B1 = 180◦ − 40◦ − 48.58◦ = 91.42◦.

To find the side c1, we use the second form for the Law of Sines
c1

sin C1
= a

sin A
.
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Thus
c1 = a sin C1

sin A
≈ 6 sin 48.58◦

sin 40◦ ≈ 9.33.

To solve triangle AB2C2, we begin by finding C2

C2 ≈ 180◦ − A − B2 = 180◦ − 40◦ − 131.42◦ = 8.58◦.

To find the side c2, we use the second form for the Law of Sines to get

c2 = a sin C2

sin A
≈ 6 sin 8.58◦

sin 40◦ ≈ 1.39.

□

4.1.5 Area of an oblique triangle
After heavy use, we determine it’s time to replace the pe‘a (sail) of our wa‘a.
Before we buy the new pe‘a, we need to determine its area. We know the length
of the ‘ōpe‘a (spar) is b = 18 feet, the length of the paepae (boom) is a = 15
feet, and the tack or the angle between them is C = 44◦. What is the area of
the pe‘a?

C = 44◦

A

B
‘ōpe‘a

b = 18

c

a = 15
paepae

pe‘a

tack

At this point, we don’t have a formula for the area of an oblique triangle.
However, we can apply the sine function to an oblique triangle to develop a
new formula for the area of a triangle.

Definition 4.1.11 Area of a Triangle. Given two sides of a triangle and
their included angle, the area of the triangle is given by:

Area = 1
2ab sin C

= 1
2ac sin B
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= 1
2bc sin A.

In other words, the area of a triangle equals one half of the product of two
sides and the sine of their included angle.

a = h

b

c

AC

B

a

b

c

AC

B

h

b

c
a

B

AC

h

♢
Proof. Recall that the area of any triangle is Area = 1

2 bh where b is the base
and h is the height of a triangle. In a right triangle, the height is the length of
one side. However, in an oblique triangle, the height is not immediately known.
If the angle C is acute, then using the property that

sin C = opposite
adjacent = h

a
,

the height is given by
h = a sin C.

If the angle C is obtuse, we use the reference angle for C, 180◦ − C to get

h = a sin(180◦ − C).

By the difference formula we get sin(180◦ − C) = sin C and thus

h = a sin C.

In a right triangle, C = 90◦ and since sin 90◦ = 1, we can also write

h = a sin C = a sin 90◦ = a · 1 = a.

Thus regardless of the triangle, we get

Area = 1
2(base)(height) = 1

2b(a sin C) = 1
2ab sin C.

The other formulas are obtained using a similar method. ■

Example 4.1.12 Area of a sail. We can now calculate the area of the sail.
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C = 44◦

A

B
‘ōpe‘a

b = 18

c

a = 15
paepae

pe‘a

tack

Solution. Using the formula, the area is

Area = 1
2ab sin C = 1

2(15)(18) sin 44◦ ≈ 93.8ft2

Thus we will need to order a sail that is 93.8ft2. □

4.1.6 Exercises

Exercise Group. Use the Law of Sines to solve each triangle. Express angles
in degrees rounded to one decimal and sides rounded to two decimals.

1. a = 12, B = 45◦, C = 60◦

a = 12

c b

A

B = 45◦ C = 60◦

Answer. b ≈ 8.78, c ≈ 10.76,
A = 75◦

2. a = 10, A = 35◦, B = 60◦

c

b a = 10

C

A = 35◦ B = 60◦

Answer. b ≈ 15.10,
c ≈ 17.37, C = 85◦
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3. b = 12, A = 45◦, B = 75◦

c

b = 12 a

C

A = 45◦
B = 75◦

Answer. a ≈ 8.78,
c ≈ 10.76, C = 60◦

4. c = 15, A = 65◦, B = 45◦

c = 15

b a

C

A = 65◦ B = 45◦

Answer. a ≈ 14.47,
b ≈ 11.29, C = 70◦

5. c = 14, A = 50◦, C = 80◦

b

c = 14 a

B

A = 50◦
C = 80◦

Answer. a ≈ 10.89,
b ≈ 10.89, B = 50◦

6. b = 15, A = 50◦, C = 70◦

b = 15

c a

B

A = 50◦ C = 70◦

Answer. a ≈ 13.27,
c ≈ 16.28, B = 60◦

Exercise Group. Use the Law of Sines to solve each triangle. Express angles
in degrees rounded to one decimal and sides rounded to two decimals.

7. a = 8, A = 50◦, C = 80◦

Answer. b = 8, c ≈ 10.28,
B = 50◦

8. b = 12, B = 60◦, C = 30◦

Answer. a ≈ 13.86,
c ≈ 6.93, A = 90◦

9. c = 10, A = 40◦, C = 70◦

Answer. a ≈ 6.84, b = 10,
B = 70◦

10. a = 15, A = 40◦, B = 100◦

Answer. b ≈ 22.98, c = 15,
C = 40◦

11. b = 20, B = 80◦, A = 20◦

Answer. a ≈ 6.94, c = 20,
C = 80◦

12. a = 8, A = 40◦, B = 75◦

Answer. b ≈ 12.02,
c ≈ 11.28, C = 65◦

13. b = 8, A = 30◦, C = 50◦

Answer. a ≈ 4.06, c ≈ 6.22,
B = 100◦

14. c = 15, A = 70◦, B = 45◦

Answer. a ≈ 15.55,
b ≈ 11.70, C = 65◦

15. a = 10, B = 60◦, C = 70◦

Answer. b ≈ 11.31,
c ≈ 12.27, A = 50◦

16. b = 14, A = 45◦, C = 80◦

Answer. a ≈ 12.09,
c ≈ 16.83, B = 55◦

17. c = 20, A = 60◦, B = 75◦

Answer. a ≈ 24.49,
b ≈ 27.32, C = 45◦

18. c = 18, A = 70◦, B = 50◦

Answer. a ≈ 19.53,
b ≈ 15.92, C = 60◦

Exercise Group. For each problem, determine the relevant case from
Table 4.1.7 and whether it results one triangle, two triangles, or none. Then
solve using the Law of Sines, with angles in degrees rounded to one decimal
place and sides to two decimals.
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19. c = 5, b = 4, C = 120◦

Answer. Case 6; one
triangle; a ≈ 1.61, A ≈ 16.1◦,
B ≈ 43.9◦

20. b = 2, c = 7, B = 30◦

Answer. Case 1; no
triangles

21. a = 8, c = 6, A = 45◦

Answer. Case 4; one
triangle; b ≈ 11.02,
B ≈ 103.0◦, C ≈ 32.0◦

22. a = 13, b = 12; B = 46◦

Answer. Case 3; two
triangles; c1 ≈ 16.55,
A1 ≈ 51.2◦, C1 ≈ 82.8◦;
c2 ≈ 1.51, A2 ≈ 128.8◦,
C2 ≈ 5.2◦

23. a =
√

3, c = 2, A = 60◦

Answer. Case 2; one right
triangle; b = 1, B = 30◦,
C = 90◦

24. a = 7, c = 5, C = 30◦

Answer. Case 3; two
triangles; b1 ≈ 9.63,
A1 ≈ 44.4◦, B1 ≈ 105.6◦;
b2 ≈ 2.49, A2 ≈ 135.6◦,
B2 ≈ 14.4◦

25. b = 14, c = 8, C = 115◦

Answer. Case 5; no
triangles

26. a = 4, b = 8, A = 30◦

Answer. Case 2; one right
triangle; c ≈ 6.93, B = 90◦,
C = 60◦

27. b = 12, c = 4, C = 55◦

Answer. Case 1; no
triangles

28. a = 7, b = 10, B = 108◦

Answer. Case 6; one
triangle; c ≈ 5.30, A ≈ 41.7◦,
C ≈ 30.3◦

29. a = 4, c = 5, A = 100◦

Answer. Case 5; no
triangles

30. b = 7, c = 4, B = 35◦

Answer. Case 4, one
triangle; a ≈ 9.89, A ≈ 125.9◦,
C ≈ 19.1◦

Exercise Group. Find the area of each triangle. Round your answer to the
nearest tenth.

31. a = 8, b = 12, C = 60◦.
Answer. 41.6

32. b = 10, c = 15, A = 45◦.
Answer. 53.0

33. c = 6, a = 9, B = 30◦.
Answer. 13.5

34. a = 5, c = 8, B = 45◦.
Answer. 14.1

35. b = 7, c = 10, A = 60◦.
Answer. 30.3

36. a = 12, b = 15, C = 75◦.
Answer. 86.9

37. b = 6, c = 8, A = 30◦.
Answer. 12.0

38. a = 9, c = 12, B = 60◦.
Answer. 46.8

39. A wa‘a is sailing in the direction Hikina (east) at 5 knots and spots an
island in the house Lā Ko‘olau (11.25◦ above due east). Six hours later (30
nm) the navigator measures the island in the house Manu Ho‘olua (45◦

above due west).

(a) How far is the wa‘a from the island at the time of its first measure-
ment, rounded to the nearest nautical mile?

Answer. 26 nm

(b) How far is the wa‘a from the island at the time of its second mea-
surement, rounded to the nearest nautical mile?

Answer. 7 nm
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(c) How close did the wa‘a get to the island, rounded to the nearest
nautical mile?

Hint. Measure the altitude.

Answer. 5 nm
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4.2 The Law of Cosines
For centuries, Micronesian navigators have sailed vast distances between islands,
relying on ancestral knowledge passed down through generations. Using clues
to determine their speed and direction, these navigators construct a mental map
of their journey, viewing the canoe as stationary compared to the ever-shifting
backdrop of movable islands.

Before embarking on a voyage, navigators know relative positions of islands
to the canoes at the start, along their route, and at the end. As the journey
unfolds, the navigator’s perspective from the stationary canoe will figuratively
“move islands” in their mental map of the voyage. This dynamic process,
known as etak, allows navigators to gauge their progress and anticipate their
destination even before sighting land.

For example, consider the voyage from Polowat to Guam. Initially, Chuuk
Lagoon lies due east in Tan Mailap (see Figure 1.1.2). However, as the journey
progresses, Chuuk Lagoon gradually shifts southeastward, aligning with Tan
Tumur at approximately 42.5◦ south of east at the end of the voyage at Guam.
This process of moving islands is illustrated in Figure 4.2.1.

Standalone

Figure 4.2.1 In Micronesian navigation, the concept of etak is illustrated as
islands appear to move relative to the stationary canoe. During a voyage from
Polowat to Guam, Chuuk Lagoon transitions from an eastern to southeastern
position, demonstrating the navigator’s perspective where islands are perceived
to move while the canoe remains still. If you are viewing the PDF or a printed
copy, you can scan the QR code or follow the “Standalone” link to watch the
video online.

Suppose the navigator is 200 nautical miles into their journey. What is θ,
the angle the navigator moved Chuuk Lagoon relative to due east? Assume
Chuuk is 143 nm east of Polowat and the angle formed between Chuuk Lagoon,
Polowat, and Guam is 124.5◦. We can illustrate what is happening below:

https://www.kamuelayong.com/trigonometry/youtube-etak.html
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Polowat

Guam

Chuuk Lagoon143 nm

200 nm

124.5◦

East
θ

Since the line from Polowat to Chuuk Lagoon and the line due east from
the canoe’s current position are parallel, the angle θ that Chuuk Lagoon has
shifted below east is equivalent to the angle formed from Polowat to Chuuk
Lagoon to the canoe by the alternate interior angles of parallel lines in
geometry. This is shown in the figure below, where the lines in blue change,
depending on the position of the canoe, but the distance between Polowat and
Chuuk Lagoon, represented in black, remains the same.

143 nm

200 nm

124.5◦

East
θ

θ

Chuuk LagoonPolowat

Canoe

This now creates a triangle where two sides (the distances between Chuuk
Lagoon and Polowat, and between Polowat and the canoe) and the included
angle (from Chuuk Lagoon to Polowat to the canoe) are known. This triangular
configuration is a side-angle-side (SAS) scenario. Unfortunately, we cannot
apply the Law of Sines to solve this oblique triangle. In this section, we learn
the principles of the Law of Cosines and how to use it to solve triangles that
are side-side-side (SSS) and side-angle-side (SAS), as well as calculating the
areas of triangles with only their sides given.

4.2.1 Law of Cosines
Theorem 4.2.2 Law of Cosines. Given a triangle with sides a, b, c and
opposite angles A, B, C, respectively,

a2 = b2 + c2 − 2bc cos A

b2 = a2 + c2 − 2ac cos B

c2 = a2 + b2 − 2ab cos C.
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c

b a

A

C

B

Thus, in any triangle, the square of one side equals the sum of the squares of
the other two sides, minus twice their product times the cosine of their included
angle.

Note: If the triangle is a right triangle, say C = 90◦, then since cos 90◦ = 0,
the Law of Cosines simplifies into the Pythagorean Theorem: c2 = a2 + b2.
Proof. To prove the first part, we will place a triangle with A at the origin and
B on the x-axis, as shown below.

x

y

c

b
a

C

A(0, 0) B

b cos A

b cos A − c

b sin A

Using right triangle trigonometry, the coordinates of C can be written as
(b cos A, b sin A). Using the Pythagorean Theorem, we get

a2 = (b cos A − c)2 + (b sin A)2

= b2 cos2 A − 2bc cos A + c2 + b2 sin2 A

= b2(cos2 A + sin2 A) + c2 − 2bc cos A

= b2(1) + c2 − 2bc cos A

= b2 + c2 − 2bc cos A

where we used the identity cos2 A + sin2 A = 1. The other two parts of the Law
of Cosines can be proved using a similar argument. ■
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4.2.2 Using Law of Cosines (SAS)
We are now ready to revisit the problem posed at the start of this section.

Example 4.2.3 Using Law of Cosines (SAS): Etak - Moving Islands.
A canoe is 200 nautical miles into a journey from Polowat to Guam. If Chuuk
Lagoon is 143 nm east of Polowat and the angle formed between Chuuk Lagoon,
Polowat, and Guam is 124.5◦, what is θ, the angle the navigator moved Chuuk
Lagoon relative to due east? First, we note that the angle formed between the
canoe, Chuuk Lagoon, and Polowat is also θ, giving us a SAS triangle. If we
denote the side of the triangle between Chuuk Lagoon and the canoe as d, we
have the following triangle:

143 nm

200 nm

d

124.5◦

East
θ

θ

Chuuk LagoonPolowat

Canoe

Solution. Since the Law of Cosines states that the square of one side equals
the sum of the squares of the other two sides minus twice their product times
the cosine of their included angle, we get:

d2 = 2002 + 1432 − 2 · 200 · 143 cos 124.5◦.

Taking the square root we get:

d =
√

2002 + 1432 − 2 · 200 · 143 cos 124.5◦ ≈ 304.71.

Now, to find the angle θ, we can use either the Law of Sines or the Law of
Cosines. If we opt for the Law of Sines, we already know side d = 304.71, the
side between Polowat and Chuuk Lagoon at 143 nm, and the angle between
the canoe, Polowat, and Chuuk Lagoon at 124.5◦. This combination results
in a side-side-angle (SSA) triangle. Given that our angle is obtuse (124.5◦)
and the side opposite it is greater than the side adjacent to the angle (i.e.,
304.71 > 143), we fall under Case 6 of Table 4.1.7, which gives us one triangle.
We will choose the Law of Sines since it requires fewer steps to isolate the angle
θ:

sin 124.5◦

304.71 = sin θ

200 .

Isolating sin θ:
sin θ = 200 · sin 124.5◦

304.71 .

Finally, to solve for θ take the inverse sine of both sides to get:

θ = sin−1
(

200 · sin 124.5◦

304.71

)
≈ 32.7◦.

Thus, 200 nm into their voyage, the navigator has moved Chuuk Lagoon
32.7◦ south of due east to Tan Harapwel. □
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Remark 4.2.4 Steps for solving SAS triangles. In general, when solving
SAS triangles:

1. Use the Law of Cosines to solve for the remaining side.

2. To find the second angle, use either the Law of Cosines or Law of Sines.

• Using the Law of Sines may offer a simpler method for finding the
angle. Be cautious of the SSA triangle (side-side-angle), which uses
the ambiguous case. Refer to Table 4.1.7 to identify the applicable
case. If we encounter Case 3 (two triangles), check if the angle
we need to find is acute (< 90◦) or obtuse (> 90◦). If it’s obtuse,
subtract the angle found using the Law of Sines from 180◦.

• Using the Law of Cosines does not require verification of whether
the angle is acute or obtuse, but it involves more steps to isolate the
angle.

3. Use the fact that the sum of the three angles in a triangle equals 180◦ to
find the third angle.

4.2.3 Using Law of Cosines (SSS)
Example 4.2.5 Using Law of Cosines (SSS). If the sides of a triangle are
a = 5, b = 7, and c = 3, find the angles.

c = 3

b = 7 a = 5

C

BA

Solution. To find A, we begin by using the Law of Cosines:

a2 = b2 + c2 − 2bc cos A.

Isolating the term with angle A we get

cos A = b2 + c2 − a2

2bc
= 72 + 32 − 52

2 · 7 · 3 = 33
42 .

Taking the inverse cosine we get

A = cos−1
(

33
42

)
≈ 38.2◦.

To find B, we can use either the Law of Sines or Law of Cosines. However,
to avoid the ambiguous case with the Law of Sines, we will continue with the
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Law of Cosines and get:

cos B = a2 + c2 − b2

2ac
= 52 + 32 − 72

2 · 5 · 3 = −15
30 = −1

2 .

Taking the inverse cosine we get

B = cos−1
(

−1
2

)
= 120◦.

To find the last angle, C, we can use the fact that the angles in a triangle
sum to 180◦:

C = 180◦ − A − B ≈ 180◦ − 38.2◦ − 120◦ = 21.8◦.

□

Remark 4.2.6 Steps for solving SSS triangles. When solving SSS
triangles, the process is similar to that of solving SAS triangles, with a slight
variation. Instead of solving for a side in Step 1, we solve for an angle. Steps 2
and 3 remain the same:

1. Use the Law of Cosines to solve for the first angle.

2. To find the second angle, use either the Law of Cosines or Law of Sines.

• Using the Law of Sines may provide a simpler method for finding the
angle. Be cautious of the SSA triangle (side-side-angle), which can
lead to the ambiguous case. Refer to Table 4.1.7 to determine our
case. If we encounter Case 3 (two triangles), verify if the angle we
need to find is acute (< 90◦) or obtuse (> 90◦). For obtuse angles,
subtract the angle found using the Law of Sines from 180◦.

• Using the Law of Cosines does not require verification of whether
the angle is acute or obtuse, but it involves more steps to isolate the
angle.

3. Use the fact that the sum of the three angles in a triangle equals 180◦ to
find the third angle.

4.2.4 Area of an oblique triangle
The Greek mathematician Heron of Alexandria derived a formula for the area of
a triangle when all three sides are given. Although a more modern derivation for
this formula involves the Law of Cosines, it is still known as Heron’s Formula.

Theorem 4.2.7 Heron’s Formula. The area of a triangle with sides a, b,
and c is

Area =
√

s(s − a)(s − b)(s − c)

where s = 1
2 (a + b + c) is half the perimeter of the triangle, also known as the

semiperimeter.
Proof. We begin by solving for cos C in the Law of Cosines:

c2 =a2 + b2 − 2ab cos C

cos C =a2 + b2 − c2

2ab
.
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Using this and the difference of squares, we get:

1 + cos C =1 + a2 + b2 − c2

2ab

=2ab + a2 + b2 − c2

2ab

=(a2 + 2ab + b2) − c2

2ab

=(a + b)2 − c2

2ab

=((a + b) + c)((a + b) − c)
2ab

=(a + b + c)(a + b − c)
2ab

=2s · 2(s − c)
2ab

=2s(s − c)
ab

,

where the last step comes from the fact that 2s = a + b + c and

2(s − c) = 2
(

a + b + c

2 − c

)
= a + b + c − 2c = a + b − c.

Similarly, we have:

1 − cos C =1 − a2 + b2 − c2

2ab

=2ab − a2 − b2 + c2

2ab

=c2 − (a2 − 2ab + b2)
2ab

=c2 − (a − b)2

2ab

=(c + (a − b))(c − (a − b))
2ab

=(a + c − b)(b + c − a)
2ab

=2(s − b)(s − a)
ab

,

where the last step comes from the fact that

2(s − b) = 2
(

a + b + c

2 − b

)
= a + b + c − 2b = a + c − b

and
2(s − a) = 2

(
a + b + c

2 − a

)
= a + b + c − 2a = b + c − a.

Next, we use Definition 4.1.11 for the area of a triangle:

Area = 1
2ab sin C.

Squaring both sides of the equation we get:

(Area)2 =1
4a2b2 sin2 C
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=1
4a2b2(1 − cos2 C)

=1
4a2b2(1 + cos C)(1 − cos C)

=1
4a2b2

(
2s(s − c)

ab

) (
2(s − b)(s − a)

ab

)
=s(s − a)(s − b)(s − c).

Taking the square root of both sides of the equation gives us Heron’s Formula:

Area =
√

s(s − a)(s − b)(s − c).

Note that our proof differs from Heron’s original proof. ■

Example 4.2.8 Polynesian Triangle. The Polynesian Triangle is an
expanse in the Pacific Ocean comprising over 1,000 islands collectively known
as Polynesia. Positioned at its northern corner are the Hawaiian Islands, while
Aotearoa marks the southwestern corner, and Rapa Nui lies at the southeastern
corner. Historically, the first settlers are believed to have arrived at Ka Lae,
Hawai‘i; Hokianga, Aotearoa; and Anakena, Rapa Nui, respectively. The
distances between these pivotal locations are as follows: 6,850 km separates
Ka Lae, Hawai`i from Hokianga, Aotearoa; 7,250 km span between Hokianga,
Aotearoa and Anakena, Rapa Nui; and 7,150 km separate Rapa Nui from Ka
Lae, Hawai‘i. What is the area of the Polynesian Triangle, rounded to the
nearest square kilometer?

Ka Lae, Hawai‘i

Hokianga, Aotearoa
Anakena, Rapa Nui

6,
85

0

7, 250

7, 150

Solution. Using Heron’s Formula, we begin by calculating the semiperimeter

s = 1
2(6, 850 + 7, 250 + 7, 150) = 10, 625.

Then the area created by the Polynesian Triangle is:

Area =
√

10, 625(10, 625 − 6, 850)(10, 625 − 7, 250)(10, 625 − 7, 150)
≈ 21, 688, 886km2.

□

4.2.5 Exercises

Exercise Group. Use the Law of Cosines to solve each triangle. Express
angles in degrees rounded to one decimal and sides rounded to two decimals.
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1. b = 8, c = 10, A = 45◦.

a

c = 10 b = 8

A = 45◦

CB

Answer. a ≈ 7.13,
B ≈ 52.5◦, C ≈ 82.5◦

2. a = 6, c = 9, B = 60◦.

a = 6

c = 9 b

A

B = 60◦
C

Answer. b ≈ 7.94,
A ≈ 40.9◦, C ≈ 79.1◦

3. a = 12, c = 15, B = 40◦.

a = 12

c = 15 b

A

B = 40◦
C

Answer. b ≈ 9.66,
A ≈ 53.0◦, C ≈ 87.0◦

4. a = 10, c = 14, B = 50◦.

a = 10

c = 14 b

A

B = 50◦
C

Answer. b ≈ 10.77,
A ≈ 45.3◦, C ≈ 84.7◦

5. a = 7, b = 9, c = 12.

a = 7

c = 12 b = 9

A

B C

Answer. A ≈ 35.4◦,
B ≈ 48.2◦, C ≈ 96.4◦

6. a = 10, b = 13, c = 15.

a = 10

c = 15 b = 13

A

B C

Answer. A ≈ 41.1◦,
B ≈ 58.7◦, C ≈ 80.2◦

(Rounded values may cause a
slight discrepancy)
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7. a = 14, b = 12, c = 9.

a = 14

c = 9 b = 12

A

B C

Answer. A ≈ 82.3◦,
B ≈ 58.1◦, C ≈ 39.6◦

8. a = 13, b = 6, c = 10.

a = 13

c = 10 b = 6

A

B C

Answer. A ≈ 106.0◦,
B ≈ 26.3◦, C ≈ 47.7◦

Exercise Group. Use the Law of Cosines to solve each triangle. Express
angles in degrees rounded to one decimal and sides rounded to two decimals.

9. a = 15, b = 20, C = 60◦.
Answer. c ≈ 18.03,
A ≈ 46.1◦, B ≈ 73.9◦

10. b = 8, c = 12, A = 60◦.
Answer. a ≈ 10.58,
B ≈ 40.9◦, C ≈ 79.1◦

11. a = 5, c = 13, B = 30◦.
Answer. b ≈ 9.02,
A ≈ 16.1◦, C ≈ 133.9◦

12. a = 9, b = 12, C = 75◦.
Answer. c ≈ 13.00,
A ≈ 42.0◦, B ≈ 63.0◦

13. b = 7, c = 10, A = 45◦.
Answer. a ≈ 7.07,
B ≈ 44.4◦, C ≈ 90.6◦

14. a = 15, c = 20, B = 55◦.
Answer. b ≈ 16.76,
A ≈ 47.2◦, C ≈ 77.8◦

(Rounded values may cause a
slight discrepancy)

15. a = 5, b = 8, c = 9.
Answer. A ≈ 33.6◦,
B ≈ 62.2◦, C ≈ 84.2◦

(Rounded values may cause a
slight discrepancy)

16. a = 7, b = 21, c = 25.
Answer. A ≈ 14.4◦,
B ≈ 48.3◦, C ≈ 117.3◦

17. a = 12, b = 16, c = 5.
Answer. A ≈ 31.1◦,
B ≈ 136.5◦, C ≈ 12.4◦

18. a = 5, b = 2, c = 4.
Answer. A ≈ 108.2◦,
B ≈ 22.3◦, C ≈ 49.5◦

19. a = 3, b = 7, c = 6.
Answer. A ≈ 25.2◦,
B ≈ 96.4◦, C ≈ 58.4◦

20. a = 9, b = 10, c = 17.
Answer. A ≈ 25.1◦,
B ≈ 28.1◦, C ≈ 126.8◦

(Rounded values may cause a
slight discrepancy)

Exercise Group. Use Heron’s Formula to find the semiperimeter and area
of each triangle. Round your answer to the nearest tenth

21. a = 5, b = 6, c = 7.
Answer. s = 9; K = 14.7

22. a = 9, b = 12, c = 15.
Answer. s = 18; K = 54

23. a = 8, b = 10, c = 12.
Answer. s = 15; K = 39.7

24. a = 7, b = 9, c = 13.
Answer. s = 14.5; K = 30

25. a = 15, b = 20, c = 25.
Answer. s = 30; K = 150

26. a = 12, b = 16, c = 20.
Answer. s = 24; K = 96

27. a = 8, b = 15, c = 17.
Answer. s = 20; K = 60

28. a = 9, b = 40, c = 41.
Answer. s = 45; K = 180
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29. The Fijian canoe Uto Ni Yalo embarks on a voyage from Fiji to Tonga,
covering 400 nautical miles with a heading of 117◦ (in the house ‘Āina
Malanai). After traveling 100 nautical miles, adverse weather conditions
force a deviation of two houses (22.5◦) off the original course. After one
day and 120 additional nautical miles, the navigator determines that a
direct route to Tonga is now viable.

Fiji
100

300120

d Tonga

22.5◦

θ

(a) At this point, what is the remaining distance to Tonga, d, rounded
to the nearest nautical mile?

Answer. 195 NM

(b) What adjustment angle, θ, rounded to the nearest tenth of a degree,
is needed to navigate to their destination?

Answer. 36.1◦

(c) What was the total distance of the voyage from Fiji to Tonga, rounded
to the nearest nautical mile?

Answer. 415 NM
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4.3 Geometric Vectors
Hōkūle‘a’s inaugural voyage from Hawai‘i to Tahiti in 1976 sparked a cultural
resurgence in Hawai‘i. By showcasing the effectiveness of traditional navigation
techniques learned from Micronesia, it soon became clear that there was a need
for constructing a wa‘a kaulua (double-hulled voyaging canoe) using traditional
methods and native materials. This canoe, named Hawai‘iloa, aimed to recover
knowledge and skills associated with traditional canoe building in Hawai‘i.

However, during the years 1989-1990, an exhaustive search across Hawai‘i
revealed a significant challenge: the lack of accessible koa trees of sufficient
size for constructing a canoe of this size. The search then expanded beyond
Hawai‘i. This decision was guided by historical evidence indicating that storms
had transported large trees from the Pacific Coast of North America to islands
like Hawai‘i, where they were traditionally used for canoe construction. As a
result, the search extended to North America in pursuit of suitable materials.

Two trees, each 200 feet high and over 400 years old, were discovered on
Shelikof Island in Soda Bay, Prince of Wales Island, west of Ketchikan, Alaska.
After conducting traditional tree-cutting ceremonies rooted in Hawaiian and
Tlingit traditions to seek permission, both trees were felled to be used for
constructing the canoe. The logs then embarked on a 2,235-nautical-mile
journey to Hawai‘i, following a heading of 256◦. This journey is an example of
a vector, a quantity possessing both magnitude and direction.

Alaska

Hawai‘i
In physics, vectors are often represented with arrows, denoting their direction,

while the length of the arrow signifies the vector’s magnitude. Vectors play
a fundamental role in describing various things in the world around us. For
example, movement of objects requires a magnitude and direction, the force
exerted on an object requires the magnitude of the force used and the direction of
the force. In this section, we will learn how to express vectors, both geometrically
and analytically as well as the various properties of vectors.

4.3.1 Geometric Vectors
Definition 4.3.1 A vector is a quantity that has both magnitude and direction.
The vector −−→

PQ represents the directed segment from point P to point Q. The
point P is called the initial point, and the point Q is called the terminal
point. The direction of −−→

PQ is from P to Q. ♢

Definition 4.3.2 The magnitude of a vector −−→
PQ, denoted as ∥

−−→
PQ∥, is the

distance between its initial point P and its terminal point Q. ♢

Definition 4.3.3 The angle θ represents the direction of a vector −−→
PQ. It is

the smallest positive angle measured in standard position between the positive
x-axis and the vector −−→

PQ, where 0◦ ≤ θ < 360◦. ♢

Remark 4.3.4 In physical contexts, −−→
PQ can also be interpreted as the dis-

placement vector, representing the change in position from P to Q.



CHAPTER 4. APPLICATIONS OF TRIGONOMETRY 255

Remark 4.3.5 Notation. Another way to write a vector is with a lowercase
boldface letter, with or without an arrow: v or −→v . Typically, if we are writing
a vector by hand, we will want to use the arrow, since it is difficult to tell if
you are writing in bold or not.

Remark 4.3.6 Calculating Magnitude and Direction. Let −−→
PQ be a

vector with initial point P = (px, py) and terminal point Q = (qx, qy). The
change in the x-direction (run) is denoted by △x = qx − px, and the change in
the y-direction (rise) is denoted by △y = qy − py.

The magnitude of the vector is the length of the segment from P to Q,
which can be calculated using the distance formula:

∥
−−→
PQ∥ =

√
(qx − px)2 + (qy − py)2 =

√
(△x)2 + (△y)2.

To determine the direction (θ) of the vector, we use the slope:

slope = qy − py

qx − px
= △y

△x
.

This is illustrated in the figure below.

x

y

−−→
PQ

P

Q

px qx

py

qy

run= qx − px = △x

rise= qy − py = △y

θ

If rise = 0 or run = 0, use the figure to determine θ. By Right Triangle
Trigonometry, the tangent of the direction angle is:

tan θ = △y

△x
.

Since −90◦ < tan−1
(

△y
△x

)
< 90◦, the inverse tangent function returns an

angle in Quadrants I or IV. To determine the correct direction θ, consider the
quadrant in which the vector lies and make the appropriate adjustments:

• If θ is in Quadrant I, then θ = tan−1
(

△y
△x

)
.

• If θ is in Quadrant II or III, then θ = tan−1
(

△y
△x

)
+ 180◦.

• If θ is in Quadrant IV, then θ = tan−1
(

△y
△x

)
+ 360◦.
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Example 4.3.7 Let v be the vector with initial point P = (−2, −1) and
terminal point Q = (3, 3).

(a) Draw the vector v.

Solution.

x

y

P (−2, −1)

Q(3, 3)

v

(b) Calculate the magnitude of v, ∥v∥.

Solution. The magnitude of a vector is the length of the vector. From
the distance formula, we have

∥v∥ =
√

(3 − (−2))2 + (3 − (−1))2.

(c) Calculate the direction of v, θ.

Solution. To find the direction, we have:

θ = tan−1
(

3 − (−1)
3 − (−2)

)
= tan−1

(
4
5

)
≈ 38.7◦.

□

Definition 4.3.8 Zero Vector. The zero vector, written as 0 or −→0 , is a
vector with zero magnitude, meaning it has no length and it has no direction.

♢

4.3.2 Equivalent Vectors
Definition 4.3.9 Equivalent Vectors. It is important to note that a
vector only requires a magnitude and direction, but it does not have a unique
location. Thus, as long as the magnitude and direction aren’t changed, a vector
may be translated or moved from one place to another. As a result, if two
vectors u and v have the same direction and the same magnitude, then they
are equivalent, or equal, written as:

u = v.

♢
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Example 4.3.10 Seven canoes, reconstructed versions of the traditional double-
hulled Polynesian voyaging vessels, were constructed in Aotearoa. These vessels,
collectively referred to as Vaka Moana (canoes of the ocean), were individually
named Marumaru Atua (Cook Islands), Gaualofa (Samoa), Te Matau a Māui
(Aotearoa), Fa‘afaite (Tahiti), Hinemoana (Aotearoa), Haunui (Aotearoa), and
Uto Ni Yalo (Fiji). In 2011-2012, these sister canoes embarked on a voyage
collectively titled Te Mana o Te Moana (The Spirit of the Ocean), covering a
combined distance of 200,000 nautical miles through open waters. On average,
each vaka traveled 120 nautical miles per day. Suppose one day, the vaka
sailed northeast in the house Manu. The resulting vectors from each vaka
are equivalent, as they all traveled in the same direction (NE) with the same
magnitude (120 nm). This is depicted in the figure below.

Maru
maru

Atua

Gau
alo

fa

Te Mata
u a Māu

i

Fa
‘af

ait
e

Hau
nu

i

Hine
moa

na

Uto
Ni Yalo

□

Example 4.3.11 Show that vectors −−→
PQ and −→

RS, shown in the figure below,
are equivalent.

x

y

P (0, 0)

Q(−2, 3)

−−→
PQ

R(3, 2)

S(1, 5)

−→
RS

Solution. To show that two vectors are equivalent, we need to show they have
the same magnitude and same direction. We will first calculate the magnitude
of each vector.

∥
−−→
PQ∥ =

√
(−2 − 0)2 + (3 − 0)2 =

√
13

∥
−→
RS∥ =

√
(1 − 3)2 + (5 − 2)2 =

√
13
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To determine the direction of each vector, we will look at their slopes. The
slope of −−→

PQ is
change in y

change in x
= 3 − 0

−2 − 0 = −3
2 ,

and the slope of −→
RS is

change in y

change in x
= 5 − 2

1 − 3 = −3
2 .

Given that both vectors −−→
PQ and −→

RS have the same slopes and are directed
upwards and to the left, it follows that they have the same direction. Therefore,
since they have the same magnitude and direction, we can conclude that −−→

PQ

and −→
RS are equivalent. □

4.3.3 Vector Addition
If we stand in Tahiti and face Hawai‘i, we would be looking in the house Haka
Ho‘olua or north by west (NbW). When the Hōkūle‘a sails from Tahiti back
home to Hawai‘i, she doesn’t head directly towards Hawai‘i in the house Haka
Ho‘olua. Instead, Hōkūle‘a initially sails north. Once the navigator determines
that Hōkūle‘a has reached the latitude of Hawai‘i, approximately 20◦ N, the
wa‘a then changes course to head westward towards home. This navigation
technique is known as latitude sailing, where knowing the latitude is crucial.
The navigator can determine the latitude by measuring the altitude of Hōkūpa‘a
(North Star), observing the altitude of stars as they reach their highest point
in the sky, or watching for pairs of stars that rise or set together.

We can represent the location of Tahiti as T , the location with the same
latitude as Hawai‘i and directly north of Tahiti as L, and the location of Hawai‘i
as H. Then, Hōkūle‘a’s northward path can be represented by the vector −→

TL,
and its westward path by the vector −−→

LH. The total displacement is equivalent
to sailing directly from Tahiti to Hawai‘i, represented by −−→

TH. See Figure 4.3.12.
We refer to the vector −−→

TH as the sum of the vectors −→
TL and −−→

LH, written as
−→
TL + −−→

LH = −−→
TH.
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−→
TL

−−→
LH

−−→
TH = −→

TL + −−→
LH

T

LH

Tahiti

Hawai‘i

Figure 4.3.12 Combining the northward and westward vectors, similar to the
navigation technique of latitude sailing, results in the direct vector from Tahiti
to Hawai‘i.

Definition 4.3.13 Vector Addition. Vector addition is the process of
combining two or more vectors to produce a resultant vector. To find the
sum of vectors u and v, we place the initial point of the second vector at the
terminal point of the first vector. The vector formed from the initial point of
the first vector to the terminal point of the second vector represents the sum of
the two vectors, denoted by u + v. Since vectors can be translated, any two
vectors can be added by shifting one vector’s starting point to the endpoint of
the other vector. Notice that adding vector v to vector u produces the same
result as adding u to v, as demonstrated below. Thus, we have

u + v = v + u.
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u

v

v

u

v + uu + v

Figure 4.3.14 The vectors u and v can be added to obtain u + v and v + u,
resulting in the same resultant vector. The arrangement is a parallelogram,
demonstrating the commutative property of vector addition.

♢

Example 4.3.15 Let u be a vector whose initial point is at (3, 5) and terminal
point at (−2, 4) and v be a vector whose initial point is at (0, −1) and terminal
point at (6, −2). Draw the vector u + v.
Solution. We will begin by drawing the vectors u and v:

x

y

u

v

To find u + v, we will translate vector v so that its initial point coincides
with the terminal point of u, which is at (−2, 4). The translated vector will
have the same magnitude and direction as v:
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x

y

u

v

v

The sum of the two vectors is the vector starting from the initial point of u
and ending at the terminal point of v, in this case from (3, 5) to (4, 3). This
resultant vector is u + v:

x

y

u

v
u + v

□

4.3.4 Multiplying Vectors by a Scalar
When a wa‘a sails for two days at 5 knots, it covers a distance of 240 miles. This
distance traveled is known as the magnitude of the vector and is represented
by a real number, which we refer to as a scalar.

The magnitude of the vector representing a wa‘a’s path for two days will be
twice that of the vector representing the path sailed for only one day. We can
now define scalar multiplication of vectors.

Definition 4.3.16 Scalar Multiplication of Vectors. If c is a scalar (real
number) and v is a vector, then the scalar multiple cv has magnitude equal
to the absolute value of c times the magnitude of v, |c|∥v∥. Additionally:

• If c > 0, the scalar multiple cv has the same direction as v.

• If c < 0, the scalar multiple cv has the opposite direction as v.

If c = 0 or v = 0, then cv = 0. ♢
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Example 4.3.17 Scalar Multiplication. To demonstrate scalar multiplica-
tion, consider a vector v representing the displacement of a canoe. Let’s say v
is a vector with magnitude 100 miles, pointing northeast. We can visualize this
vector as representing the journey of a canoe from one point to another.

Now, let’s explore scalar multiplication applied to this vector:

• 1v: This represents the same direction and magnitude as v.

• 1
2 v: This represents half the magnitude of v, so it would have a magnitude
of 50 miles, still pointing northeast.

• −v: This represents the opposite direction of v, so it would have the
same magnitude of 100 miles but pointing southwest instead.

• 2v: This represents doubling the magnitude of v, so it would have a
magnitude of 200 miles, still pointing northeast.

The figure below illustrates the original vector v and the resulting vectors
1v, 1

2 v, −v, and 2v.

v

1v −v

2v

1
2
v

□

4.3.5 Vector Subtraction
Definition 4.3.18 Vector Subtraction. Vector subtraction is defined
as the sum of one vector with the negative of another vector. In other words,
u − v = u + (−v). ♢

Example 4.3.19 Given vectors u and v, shown in the figure below, find u − v.
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x

y

u v

Solution. By Definition 4.3.18, finding u − v is equivalent to finding u + (−v)
so we first need to find −v. We do this by flipping vector v so that it points in
the opposite direction (from (0, −2) to (5, 5)):

x

y

u −v

To add u and −v, we will place the initial point of −v at the terminal point
of vector u. This is at the point (−4, 1).
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x

y

u −v

−v

The resultant vector from the initial point of u to the terminal point of −v
is the vector u − v.

x

y

u

−v
u − v

□

Remark 4.3.20 Vector Subtraction in a Parallelogram. Given two
vectors u and v, we can visualize their sum and difference using a parallelogram.
Translating one of the vectors so that their initial points coincide, we construct
a parallelogram with u and v as adjacent sides.

The sum of the two vectors, u + v, is represented by the diagonal of the
parallelogram extending from the common initial point to the opposite corner.
This diagonal shows the resultant vector when moving along u and then v.
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u

v

v

u

u + v

The difference of the two vectors, u − v, corresponds to the other diagonal
of the parallelogram. This diagonal extends from the initial point of u to the
terminal point of −v, meaning it represents the vector obtained by adding u
and the negation of v.

u

v

v

u
u − v

4.3.6 Velocity
Vectors can represent movement of various physical objects. For instance, the
velocity of a moving wa‘a (canoe) is depicted by a vector, which indicates the
direction of motion and the speed of the wa‘a. It is called the velocity vector
and can also describe other physical phenomena such as wind and currents.

Example 4.3.21 Apparent Wind. Standing on the deck of a moving canoe,
we’ll feel the wind against our face. However, this sensation is not solely due
to the wind moving over the water. It is influenced by two factors: the actual
wind blowing across the ocean, known as the true wind, and the wind created
by the canoe’s own motion, called the headwind. The combination of these
two is what we perceive as the apparent wind.
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Headwind is similar to the resistance felt when extending our hand out of a
moving car window on a still day—it results purely from our motion through
the air. Mathematically, headwind is the negative of the canoe’s velocity vector.
The apparent wind is the vector sum of the true wind and the headwind.

The velocity of the apparent wind is determined by adding the velocities
of headwind and true wind. If the true wind comes from the bow (front) of the
canoe, the apparent wind increases. Conversely, if the true wind comes from
the stern (back), the apparent wind decreases. For instance, sailing at 5 knots
into a true wind of 5 knots would result in an apparent wind of 10 knots, as
shown in the figure below.

v

−v

w

(−v) + w

Velocity of canoe
5 knots

Velocity of headwind
-5 knots

Velocity of true wind
-5 knots

Velocity of apparent wind
-5-5=-10 knots

However, sailing at 5 knots with the true wind also blowing at 5 knots from
behind would result in a zero apparent wind, as we would be moving at the
same velocity as the wind, with no wind moving past us. This is shown in the
following figure.

v

−v

w

(−v) + w

Velocity of canoe
5 knots

Velocity of headwind
-5 knots

Velocity of true wind
5 knots

Velocity of apparent wind
-5+5=0 knots

Understanding the apparent wind is crucial for sail trimming and optimizing
energy from the wind. Navigators must also consider apparent wind’s impact
on the canoe’s speed and course. □

Example 4.3.22 Apparent Wind. The wa‘a Mānaiakalani is sailing off the
shore of Lāhainā at a speed of 5 knots. According to the weather report, the
true wind is moving at 15 knots. By turning our face into the wind so that we
can feel the wind blowing evening past both sides of our face, we can determine
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the direction of the apparent wind, which we measure to 50◦ to the left of our
course. What is the magnitude of the apparent wind?

Headwind

Apparent wind

True wind

Solution. We have the following triangle:

5

a

15

B

A

50◦

We can analyze this scenario using the Law of Sines. Given that the known
angle is 50◦ and the side opposite to it is 15 knots (the true wind), and the
side adjacent to it is 5 knots (the canoe’s speed), we have a Side-Side-Angle
(SSA) triangle situation, specifically Case 4, which results in only one possible
triangle.

First, we find angle B using the Law of Sines:

sin 50◦

15 = sin B

5 .

From this, we get:

B = sin−1
(

5 sin 50◦

15 )
)

≈ 14.8◦.

Now, we can now calculate angle A:

A = 180◦ − 50◦ − 14.8◦ = 115.2◦.

Next, to determine the magnitude of the apparent wind, we find side a using
the Law of Sines:

a

sin 115.2◦ = 15
sin 50◦ .

Therefore,
a = sin 115.2◦ · 15

sin 50◦ ≈ 17.7.

Thus, the magnitude of the apparent wind is approximately 17.7 knots. □
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4.3.7 Exercises

Exercise Group. Draw the vector with initial point P and terminal point Q.
1. P = (2, −3); Q = (1, 4)

Answer.

x

y

P

Q

2. P = (0, −2); Q = (3, 3)
Answer.

x

y

P

Q

3. P = (3, −1); Q = (4, −3)
Answer.

x

y

P

Q

4. P = (2, 1); Q = (−3, 4)
Answer.

x

y

P

Q

5. P = (−4, 0); Q = (3, −2)
Answer.

x

y

P

Q

6. P = (4, 3); Q = (−1, 0)
Answer.

x

y

P

Q

Exercise Group. Given the vector −−→
PQ, where P is the initial point and Q is

the terminal point, compute the magnitude ∥
−−→
PQ∥ and the direction θ. Express

the direction in degrees, rounded to one decimal place.
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7.

x

y

P (−3, −1)

Q(2, 3)

−−→
PQ

Answer.
√

41, 38.7◦

8.

x

y

P (0, 4)

Q(5, −2)

−−→
PQ

Answer.
√

61, 309.8◦

9. P = (2, −4); Q = (3, 2)
Answer.

√
37, 80.5◦

10. P = (−2, 2); Q = (0, 1)
Answer.

√
5, 333.4◦

11. P = (−3, 5); Q = (4, 1)
Answer.

√
65, 330.3◦

12. P = (−1, −5); Q = (−4, 0)
Answer.

√
34, 121.0◦

13. P = (5, 4); Q = (1, 3)
Answer.

√
17, 194.0◦

14. P = (−5, −1); Q = (0, −3)
Answer.

√
29, 338.2◦

Exercise Group. Determine if the given vectors u and v are equivalent.
15.

u

v

Solution. Not Equivalent

16.

u

v

Solution. Equivalent
17.

u

v

Solution. Not Equivalent

18.

u
v

Solution. Equivalent
19. u has initial point at (−1, 1)

and terminal point at (3, −4);
v has initial point at (0, 2)
and terminal point at (4, −3).
Answer. Equivalent

20. u has initial point at (2, 1)
and terminal point at (−3, 2);
v has initial point at (1, −4)
and terminal point at (6, −3);.
Answer. Not Equivalent
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21. u has initial point at (2, 0)
and terminal point at (4, 4); v
has initial point at (3, −2) and
terminal point at (−4, 1).
Answer. Not Equivalent

22. u has initial point at (2, 4)
and terminal point at (0, −3);
v has initial point at (1, 2) and
terminal point at (−1, −5).
Answer. Equivalent

Exercise Group. Use the vectors u and v, shown below, to graph the
following vectors:

u

v

23. 2v
Answer.

2v

24. 3u
Answer.

3u

25. 1
2 u

Answer.

1
2 u

26. −v
Answer.

−v
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27. u + v
Answer.

u

v
u + v

28. u − v
Answer.

u −v

u − v

29. v − u
Answer.

v
−u

v − u

30. 3u − v
Answer.

3u

−v

3u − v

Exercise Group. Changes in the speed of the true wind can alter the
apparent wind. In each scenario below, a canoe sails at 5 knots, with the true
wind blowing perpendicular to the canoe, as depicted in the figure. Calculate
both the direction, θ, and magnitude of the apparent wind for the given true
wind speed, rounded to one decimal. Since this forms a right triangle, we use
the formula:

θ = tan−1 true wind
headwind .

Headwind
Apparent wind

True wind

θ
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31. True wind: 5 knots

5 knots
Apparent wind

5 knots

θ

Answer. 45◦; 7.1 knots
32. True wind: 10 knots

5 knots
Apparent wind

10 knots

θ

Answer. 63.4◦; 11.2 knots
33. True wind: 15 knots

5 knots
Apparent wind

15 knots

θ

Answer. 71.6◦; 15.8 knots
34. How does the apparent wind change as the true wind increases?

Answer. As the true wind increases, the angle and magnitude of the
apparent wind increase.

Exercise Group. In addition to changes in the speed of the true wind, the
apparent wind can be affected by changes in the speed of the canoe. In each
scenario below, true wind blows perpendicular to the canoe at 10 knots, as
depicted in the figure. Calculate both the direction, θ, and magnitude of the
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apparent wind for the given speed of the canoe, rounded to one decimal.

Headwind
Apparent wind

True wind

θ

35. Canoe speed: 3 knots

3 knots
Apparent wind

10 knots

θ

Answer. 73.3◦; 10.4 knots
36. Canoe speed: 6 knots

5 knots
Apparent wind

10 knots

θ

Answer. 59.0◦; 11.7 knots
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37. Canoe speed: 9 knots

7 knots
Apparent wind

10 knots

θ

Answer. 48.0◦; 13.5 knots
38. How does the apparent wind change as the true wind increases?

Answer. As the speed of the canoe increases, the angle decreases
and the magnitude of the apparent wind increases.
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4.4 Coordinate Vectors
In Section 4.3, we visualized vectors as directed line segments with magnitudes
and direction. Now, we will explore vectors through a coordinate approach,
where we express vectors in terms of their components along the coordinate
axes .

4.4.1 Vectors in Coordinates
Definition 4.4.1 Component Form of a Vector. A vector v with initial
point P (x1, y1) and terminal point Q(x2, y2) can be expressed in various ways.
One common representation is as the directed line segment from point P to
point Q, denoted as −−→

PQ. Alternatively, we can describe it using the changes
in the x− and y− coordinates between points P and Q. These changes are
referred to as the horizontal component and vertical component of the
vector, denoted as vx and vy respectively. Mathematically, these representations
are all equivalent:

v = −−→
PQ

= ⟨x2 − x1, y2 − y1⟩
= ⟨vx, vy⟩

as illustrated in the following figure.

x

y

v

P

Q

x1 x2

y1

y2

vx = x2 − x1

vy = y2 − y1

♢

Remark 4.4.2 Notation. To avoid confusion with the notation for a point
and an interval, we use the symbol ⟨v1, v2⟩ for an ordered pair that represents
a vector in component form. Lowercase letters are used to represent the
components.

Definition 4.4.3 Position Vector. A vector v with initial point at (0, 0)
and terminal point at (a, b) is called the position vector and can be written
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as
v = ⟨a − 0, b − 0⟩ = ⟨a, b⟩.

♢

Remark 4.4.4 The position vector represents the terminal point of any vector
v when its initial point is at the origin. Essentially, it is v translated so that its
initial point is at the origin. This translation does not change the magnitude
or direction, making the two vectors equivalent. Thus, we can refer to both
vectors as v. In other words, the terminal point of a vector starting at the
origin is defined by its horizontal and vertical components.

Example 4.4.5 Find the position vector of the vector that goes from P (2, −1)
to Q(5, 3).
Solution. From Definition 4.4.1, our original vector can be written as:

v = −−→
PQ = ⟨5 − 2, 3 − (−1)⟩ = ⟨3, 4⟩.

Then by Definition 4.4.3, the position vector is:

v = ⟨3, 4⟩.

This vector starts at the origin with 3 as its horizontal component and 4 as its
vertical component, as illustrated in the figure below.

x

y

v = ⟨3, 4⟩

v = ⟨3, 4⟩

P (2, −1)

Q(5, 3)

□

Definition 4.4.6 Zero Vector. The zero vector is the vector 0 = ⟨0, 0⟩ ♢

Definition 4.4.7 Magnitude of a Vector. Given a vector v = ⟨vx, vy⟩, its
magnitude or length is

∥v∥ =
√

v2
x + v2

y.

♢

Remark 4.4.8 This formula is derived from the Pythagorean Theorem or the
distance formula where the square of the magnitude equals the square of the
horizontal component plus the square of the vertical component:

∥v∥2 = v2
x + v2

y.

This relationship can be visually understood using the Pythagorean Theorem,
as illustrated in the following figure.
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x

y

v = ⟨vx, vy⟩

vx

vy

∥v∥

Example 4.4.9 Find the magnitude of each vector.

(a) u = ⟨10, −5⟩

Solution.

∥u∥ =
√

102 + (−5)2 =
√

125 =
√

25 · 5 =
√

25 ·
√

5 = 5
√

5

(b) v = ⟨−2, 7⟩

Solution.
∥v∥ =

√
(−2)2 + 72 =

√
4 + 49 =

√
53

(c) w = ⟨ 12
13 , 5

13 ⟩

Solution.

∥w∥ =

√(
12
13

)2
+

(
5
13

)2
=

√
144
169 + 25

169 =
√

169
169 = 1

□

Definition 4.4.10 Unit Vector. A vector u with magnitude 1, ∥u∥ = 1, is
called a unit vector ♢

Definition 4.4.11 Algebraic operations of vectors. If u = ⟨ux, uy⟩,
v = ⟨vx, vy⟩, and c is a scalar, then

u + v = ⟨ux + vx, uy + vy⟩
u − v = ⟨ux − vx, uy − vy⟩

cu = ⟨cux, cuy⟩.

♢

Example 4.4.12 Let u = ⟨5, 1⟩ and v = ⟨4, 6⟩. Compute the following:

(a) u + v

Solution. u + v = ⟨5, 1⟩ + ⟨4, 6⟩ = ⟨5 + 4, 1 + 6⟩ = ⟨9, 7⟩
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u

v

u + v

5 4

9

7

1

6

(b) u − v

Solution. u − v = ⟨5, 1⟩ − ⟨4, 6⟩ = ⟨5 − 4, 1 − 6⟩ = ⟨1, −5⟩
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u

-vu
−

v
1 4

5

5

1

6

(c) 3u

Solution. 3u = 3⟨5, 1⟩ = ⟨3 · 5, 3 · 1⟩ = ⟨15, 3⟩

u

3u

5

15

3

1

□
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4.4.2 Properties of Addition, Length, and Scalar Multipli-
cation

Definition 4.4.13 Properties of Vectors. If u, v, and w are vectors, 0 is
the zero vector, and c and d are scalars, then:

Vector Addition

• u + v = v + u

• u + (v + w) = (u + v) + w

• u + 0 = u

• u + (−u) = 0

Length of a Vector

• ∥cu∥ = |c|∥u∥

Scalar Multiplication

• c(u + v) = cu + cv

• (c + d)u = cu + du

• (cd)u = c(du) = d(cu)

• 1u = u

• 0u = 0

• c0 = 0

♢

4.4.3 Finding a Unit Vector
Sometimes it is useful to look at problems involving vectors in terms of a vector
in the same direction, but with a magnitude of one. Recall that a unit vector
u is a vector whose length is one, ∥u∥ = 1. To find a unit vector in the same
direction, we will need to multiply that vector by the reciprocal of its length or
magnitude.

Definition 4.4.14 Unit Vector That Has the Same Direction as v. Let
v be any vector. The vector

u = v
∥v∥

is a unit vector that has the same direction as v. ♢

Example 4.4.15 Find the unit vector that has the same direction as v =
⟨10, −5⟩.
Solution. From Example 4.4.9, we know ∥v∥ = 5

√
5. Then

u = v
∥v∥

= ⟨10, −5⟩
5
√

5

=
〈

10
5
√

5
, − 5

5
√

5

〉
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=
〈

2√
5

, − 1√
5

〉
.

We can verify that this is in fact a unit vector by computing the magnitude:

∥u∥ =
∥∥∥∥〈

2√
5

, − 1√
5

〉∥∥∥∥
=

√(
2√
5

)2
+

(
− 1√

5

)2

=
√

4
5 + 1

5
= 1.

□
Two useful unit vectors are i and j. The vector i represents the unit vector

whose direction is along the positive x-axis and the vector j represents the unit
vector whose direction is along the positive y-axis.

Definition 4.4.16 i and j. The unit vectors i and j are defined as

i = ⟨1, 0⟩, j = ⟨0, 1⟩.

♢
We can now represent any vector using the unit vectors i and j.

Definition 4.4.17 Horizontal and Vertical Components of a Vector.
Let v be any vector. We can express v in terms of its horizontal and vertical
components:

v = ⟨vx, vy⟩ = vxi + vyj.

♢

4.4.4 Vector Components and Direction
Recall that a vector is composed of a direction and magnitude. Earlier in this
section we learned how to calculate the magnitude. Now we will discuss how to
calculate the direction.
Definition 4.4.18 Let v = ⟨vx, vy⟩ be a vector. The angle θ represents the
direction of v and is the smallest positive angle in standard position formed
by the positive x-axis and v (0◦ ≤ θ < 360◦). ♢

Remark 4.4.19 Finding Direction of a Vector. Recall that

tan θ = vy

vx
.

Since −90◦ < tan−1
(

vy

vx

)
< 90◦, the inverse tangent function returns an angle

in Quadrants I or IV. To determine the correct direction θ, consider the quadrant
in which the vector lies and make the appropriate adjustments:

• If θ is in Quadrant I, then θ = tan−1
(

vy

vx

)
.

• If θ is in Quadrant II or III, then θ = tan−1
(

vy

vx

)
+ 180◦.

• If θ is in Quadrant IV, then θ = tan−1
(

vy

vx

)
+ 360◦.
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We now have all the information needed to write a vector.
Definition 4.4.20 Finding Horizontal and Vertical Components of
Vectors from Magnitude and Direction. For vector v with magnitude
∥v∥ and direction θ, we can use Right Triangle Trigonometry to solve for the
horizontal and vertical components, denoted as vx and vy, respectively:

vx = ∥v∥ cos θ, vy = ∥v∥ sin θ.

This allows us to express v as:

v = ∥v∥ cos θi + ∥v∥ sin θj = ⟨∥v∥ cos θ, ∥v∥ sin θ⟩.

x

y

v

θ

a = ∥v∥ cos θ

b = ∥v∥ sin θ

∥v∥

♢

4.4.5 Velocity
Vectors can be used to represent the velocity of a moving canoe. These velocity
vectors have a direction and magnitude.

Example 4.4.21 Wind is blowing from the house Nā Leo Ho‘olua (N22.5◦W)
at 10 knots. Write the wind velocity as a vector v.
Solution. First, we note that since the velocity is 10 knots, we have ∥v∥ = 10.
Next, we need to find the direction. Since θ is measured from the positive
x-axis, by Definition 4.4.20 we see that

θ = 90◦ + 22.5◦ = 112.5◦.

To find the vector, will need the horizontal and vertical components:

vx =∥v∥ cos θ = 10 cos 112.5◦ ≈ −3.8
vy =∥v∥ sin θ = 10 sin 112.5◦ ≈ 9.2.

Thus
v ≈ −3.8i + 9.2j = ⟨−3.8, 9.2⟩.
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x

y

v

θ = 112.5◦

22.5◦

3.8

9.2

□

Example 4.4.22 Calculating Canoe Velocity with Current Drift. The
vaka Marumaru Atua sets sail on a northward voyage from Rarotonga to Hawai‘i,
maintaining a steady speed of 5 knots through the water. However, a 1-knot
current flows in the direction of Lā Kona (a heading of 260 degrees). This
current’s influence is like walking across a moving floor—no matter how steadily
the vaka sails north, the entire ocean beneath it is shifting, altering its actual
path. Similarly, Marumaru Atua navigates while the water, in the form of a
current, also moves. In sailing, the direction and speed at which the current is
pushing the vaka are referred to as set and drift, respectively.

The actual velocity of Marumaru Atua is the resultant of the vaka’s velocity
and the current’s velocity. This resultant velocity vector denotes the vaka’s
speed and direction relative to fixed objects on Earth, influenced by the current’s
impact on Marumaru Atua. The magnitude and direction of this velocity vector
are represented by the speed over ground (SOG) and course over ground
(COG), respectively. SOG represents the speed of the vaka relative to fixed
objects, accounting for both the vaka’s speed through the water and the current’s
speed and direction. COG indicates the direction of the vaka’s motion over the
Earth’s surface.

Understanding the difference between the velocity over water and the velocity
relative to fixed objects illustrates the influence set and drift have on the vaka’s
course and speed over ground. Voyagers need to account for set and drift when
navigating to ensure they reach their intended destination accurately and safely.
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(a) Express Marumaru Atua’s velocity vector, represented as vm, and the
velocity vector of the current, denoted as vc, in terms of their horizontal
and vertical components. Round the answer to two decimal places.

Solution. First, we draw the velocity vectors for Marumaru Atua and
the current:

N

S

EW

vm

vc

Since Marumaru Atua is sailing north at 5 knots, the velocity is:

vm = ⟨0, 5⟩.

To find the vector for the current, we need to know t, the angle of the
velocity vector in standard position (see Definition 1.2.8). We begin by
drawing the heading angle of 260◦ and its reference angle, t′.

x

y

260◦

t′

We can see from the figure that 260◦ + t′ = 270◦, thus we get our reference
angle as

t′ = 10◦.

We now draw our angle, t, in standard position and the reference angle,
t′:
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x

y

t

10◦

From Remark 1.5.9, we have

t = 180◦ + 10◦ = 190◦.

Thus, by Definition 4.4.20 the velocity for the current is

vc = ⟨1 cos 190◦, 1 sin 190◦⟩ ≈ ⟨−0.98, −0.17⟩.

(b) Find vg, the velocity of Marumaru Atua relative to fixed objects on the
ground.

Solution. The velocity relative to fixed objects on the ground is the
sum of the two vectors:

vg = vm + vc = ⟨0, 5⟩ + ⟨−0.98, −0.17⟩
= ⟨−0.98, 5 − 0.17⟩
= ⟨−0.98, 4.83⟩.

This is visually demonstrated in the figure below:

N

S

EW

vm

vc

vg

(c) Find the speed over ground (SOG) and the course over ground (COG) of
Marumaru Atua, rounded to one decimal place.
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Solution. The actual speed of Marumaru Atua is simply the magnitude
of the velocity over ground:

∥vg∥ = ∥⟨−0.98, 4.83⟩∥ =
√

(−0.98)2 + (4.832) ≈ 4.9 knots.

Thus, although the vaka sails through the water at 5 knots, its forward
progress is slightly slower with a speed over ground at 4.9 knots.
To find the course over ground, we will use Remark 4.4.19 to find direction
of the velocity:

tan−1 vy

vx
= tan−1 4.83

−0.98 ≈ −78.5◦.

Since our velocity vector is in Quadrant II, our course over ground is

θ = −78.5◦ + 180◦ = 101.5◦.

□

4.4.6 Exercises

Exercise Group. Draw the vector represented by the given components.
1. 3i − 2j

Answer.
2. −4i + j

Answer.

3. 2i + 4j
Answer.

4. −3j
Answer.
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5. ⟨−3, 0⟩
Answer.

6. ⟨1, 2⟩
Answer.

7. ⟨4, −4⟩
Answer.

8. ⟨−2, 3⟩
Answer.

Exercise Group. For each of the following, find the vector with initial point
at P and terminal point at Q. Express your answer in form ⟨a, b⟩.

9.

x

y

P

Q

Answer. ⟨−6, −2⟩

10.

x

y

P

Q

Answer. ⟨4, −5⟩
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11.

x

y

P

Q

Answer. ⟨4, −4⟩

12.

x

y

P

Q

Answer. ⟨−3, 1⟩
13. P = (4, −6), Q = (10, 1)

Answer. ⟨6, 7⟩
14. P = (−8, −5), Q = (5, 8)

Answer. ⟨13, 13⟩
15. P = (2, 0), Q = (−7, −3)

Answer. ⟨−9, −3⟩
16. P = (1, 6), Q = (−4, −2)

Answer. ⟨−5, −8⟩
17. P = (−6, 4), Q = (7, −9)

Answer. ⟨13, −13⟩
18. P = (−1, 5), Q = (3, −8)

Answer. ⟨4, −13⟩
19. P = (9, −1), Q = (−10, 10)

Answer. ⟨−19, 11⟩
20. P = (−7, 6), Q = (4, −3)

Answer. ⟨11, −9⟩

Exercise Group. Express each vector in terms of the unit vectors i and j.
21. ⟨−1, 4⟩

Answer. −i + 4j
22. ⟨2, −1⟩

Answer. 2i − j
23. ⟨2, 5⟩

Answer. 2i + 5j
24. ⟨3, 3⟩

Answer. 3i + 3j

Exercise Group. Express each vector in the form ⟨a, b⟩.
25. −4i − 2j

Answer. ⟨−4, −2⟩
26. i − 3j

Answer. ⟨1, −3⟩
27. −2i + j

Answer. ⟨−2, 1⟩
28. 4i

Answer. ⟨4, 0⟩

Exercise Group. For given vectors u and v, find 2u, u + v, u − v, and
3u + 2v.

29. u = ⟨1, 2⟩, v = ⟨2, 0⟩
Answer. 2u = ⟨2, 4⟩,
u + v = ⟨3, 2⟩, u − v = ⟨−1, 2⟩,
3u + 2v = ⟨7, 6⟩

30. u = ⟨5, 1⟩, v = ⟨−3, −2⟩
Answer. 2u = ⟨10, 2⟩,
u + v = ⟨2, −1⟩, u − v = ⟨8, 3⟩,
3u + 2v = ⟨9, −1⟩

31. u = ⟨−2, 4⟩, v = ⟨0, 4⟩
Answer. 2u = ⟨−4, 8⟩,
u + v = ⟨−2, 8⟩,
u − v = ⟨−2, 0⟩,
3u + 2v = ⟨−6, 20⟩

32. u = ⟨−1, −5⟩, v = ⟨1, 2⟩
Answer. 2u = ⟨−2, −10⟩,
u + v = ⟨0, −3⟩,
u − v = ⟨−2, −7⟩,
3u + 2v = ⟨−1, −11⟩
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33. u = ⟨3, −1⟩, v = ⟨−4, 4⟩
Answer. 2u = ⟨6, −2⟩,
u + v = ⟨−1, 3⟩,
u − v = ⟨7, −5⟩,
3u + 2v = ⟨1, 5⟩

34. u = ⟨−2, −2⟩, v = ⟨1, 3⟩
Answer. 2u = ⟨−4, −4⟩,
u + v = ⟨−1, 1⟩,
u − v = ⟨−3, −5⟩,
3u + 2v = ⟨−4, 0⟩

Exercise Group. A fundamental property in Euclidean geometry is the
Triangle Inequality, which states that for any triangle, the sum of the
lengths of any two sides of a triangle is greater than or equal to the length
of the remaining side. This property can be illustrated using vectors, where
combining vectors u and v results in a triangle with the third side represented
by u + v, as shown in Figure 4.3.14. The Triangle Inequality is expressed as
∥u∥ + ∥v∥ ≥ ∥u + v∥.

To demonstrate the Triangle Inequality with given vectors u and v, calculate
the following magnitudes rounded to the nearest tenth: ∥u∥, ∥v∥, ∥u∥ + ∥v∥,
and ∥u + v∥. Note that to calculate ∥u + v∥, first find the vector u + v

35. u = 2i − 2j, v = 3i + 4j
Answer. ∥u∥ = 2.8,
∥v∥ = 5, ∥u∥ + ∥v∥ = 7.8,
∥u + v∥ = 5.4

36. u = 5i − j, v = −3i
Answer. ∥u∥ = 5.1,
∥v∥ = 3, ∥u∥ + ∥v∥ = 8.1,
∥u + v∥ = 2.2

37. u = ⟨−2, 4⟩, v = ⟨3, −4⟩
Answer. ∥u∥ = 4.5,
∥v∥ = 5, ∥u∥ + ∥v∥ = 9.5,
∥u + v∥ = 1

38. u = ⟨0, 2⟩, v = ⟨1, 3⟩
Answer. ∥u∥ = 2,
∥v∥ = 3.2, ∥u + v∥ = 5.1,
∥u∥ + ∥v∥ = 5.2

39. u = ⟨−4, −1⟩, v = ⟨4, −3⟩
Answer. ∥u∥ = 4.1,
∥v∥ = 5, ∥u∥ + ∥v∥ = 9.1,
∥u + v∥ = 4

40. u = ⟨2, 1⟩, v = ⟨4, 2⟩
Answer. ∥u∥ = 2.2,
∥v∥ = 4.5, ∥u∥ + ∥v∥ = 6.7,
∥u + v∥ = 6.7

Exercise Group. Given the vector v, find the unit vector u in the same
direction. Verify that ∥u∥ = 1.

41. v = −i + 6j
Answer. u = − 1√

37 i + 6√
37 j;

∥u∥ = 1

42. v = 4i − 3j
Answer. u = 4

5 i − 3
5 j;

∥u∥ = 1
43. v = ⟨2, −5⟩

Answer. u =
〈

2√
29 , − 5√

29

〉
;

∥u∥ = 1

44. v = ⟨3, −2⟩

Answer. u =
〈

3√
13 , − 2√

13

〉
;

∥u∥ = 1
45. v = ⟨0, −4⟩

Answer. u = ⟨0, −1⟩;
∥u∥ = 1

46. v = ⟨5, 1⟩

Answer. u =
〈

5√
26 , 1√

26

〉
;

∥u∥ = 1

Exercise Group. For each problem, the magnitude and direction of vector v
are given. Find the horizontal and vertical components of the vector, vx and
vy, respectively, and write the vector in the form v = vxi + vyj.

47. ∥v∥ = 2; θ = 135◦

Answer. v = −
√

2i +
√

2j
48. ∥v∥ = 6; θ = 300◦

Answer. v = 3i − 3
√

3j
49. ∥v∥ = 4; θ = 210◦

Answer. v = −2
√

3i − 2j
50. ∥v∥ = 3; θ = 30◦

Answer. v = 3
√

3
2 i + 3

2 j
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51. ∥v∥ = 5; θ = 120◦

Answer. v = − 5
2 i + 5

√
3

2 j
52. ∥v∥ = 2; θ = 315◦

Answer. v =
√

2i −
√

2j

Exercise Group. Find the magnitude and direction angle of vector v. Round
the answers to one decimal place and express angles in degrees.

53. v = 2i + 2j
Answer. ∥v∥ = 2.8; θ = 45◦

54. v = −3i + 7j
Answer. ∥v∥ = 7.6;
θ = 113.2◦

55. v = ⟨4, −1⟩
Answer. ∥v∥ = 4.1;
θ = 346.0◦

56. v = ⟨3, 4⟩
Answer. ∥v∥ = 5; θ = 53.1◦

57. v = ⟨0, −3⟩
Answer. ∥v∥ = 3; θ = 270◦

58. v = ⟨−
√

3, −1⟩
Answer. ∥v∥ = 2; θ = 210◦

59. Leeway. When a wa‘a sails on the ocean, it rarely moves precisely in
the direction it’s pointed. One reason for this is that crosswind can push
the wa‘a off its course. The angle of displacement between the apparent
heading of the wa‘a and the direction the wa‘a is actually traveling through
the water is referred to as leeway. Using vector addition, we can determine
where the wa‘a will actually travel. However, on the wa‘a, the navigator
can determine the leeway by observing the angle between the wake behind
the wa‘a and the apparent direction the wa‘a is pointed towards.

In order to compensate for the wind, the navigator must steer the wa‘a
into the wind by the same angle as the leeway angle. For example, if the
wa‘a needs to sail in the house Manu Malanai and the wind is pushing
the wa‘a one house further south, the wa‘a will move in the house Nālani
Malanai. To maintain the course in the house Manu Malanai, the navigator
must then point the wa‘a one house north with an apparent heading in the
house of Noio Malanai in order for the actual heading to be in the house
of Manu Malanai.
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Apparent Heading of Wa‘a

W
ake

of W
a‘a

Actual Heading
of W

a‘a

Wind

Leeway

Wind

Angle of Leeway

If the apparent heading is represented by the vector ⟨6, −5⟩ and the
leeway is represented by the vector ⟨−3, −1⟩, calculate the vector for the
actual heading.
Answer. ⟨3, −6⟩



Appendix A

An Introduction to the Ca-
noes in This Book

Here we will introduce the canoes ffeatured in this book.

292
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A.1 Alingano Maisu
The Alingano Maisu is a double-hulled voyaging canoe built in Kawaihae in
2007 by members of Na Kalai Wa‘a Moku o Hawai‘i as a gift to Mau Piailug
and the people of Satawal. It is the sister canoe to Makali‘i.
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A.2 Fa‘afaite
Fa‘afaite is a double-hulled voyaging canoe built in 2009. It is one of eight
vaka moana built for the Okeanos Foundation for the Sea. It is owned by the
Fa‘afaite - Tahiti Voyaging Society.
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A.3 Gaualofa
Gaualofa is a double-hulled voyaging canoe built in 2012. It is one of eight
vaka moana built for the Okeanos Foundation for the Sea. It is owned by the
Samoan Voyaging Society.
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A.4 Haunui
Haunui is a double-hulled voyaging canoe that was relaunched in 2011. It is
owned by Te Toki Voyaging Trust.



APPENDIX A. AN INTRODUCTION TO THE CANOES IN THIS BOOK297

A.5 Hawai‘iloa
Hawai‘iloa is a double-hulled voyaging canoe built in 2009.
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A.6 Hinemoana
Hinemoana is a double-hulled voyaging canoe built in 2009.
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A.7 Hōkūle‘a
Hōkūle‘a is a double-hulled voyaging canoe built in 2009.
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A.8 Kānehūnāmoku
Kānehūnāmoku is a double-hulled voyaging canoe built in 2009.
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A.9 Mānaiakalani
Mānaiakalani is a double-hulled voyaging canoe built in 2009.
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A.10 Marumaru Atua
Marumaru Atua is a double-hulled voyaging canoe built in 2009.
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A.11 Paikea
Paikea is a double-hulled voyaging canoe built in 2009.
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A.12 Te Matau a Māui
Faafaite is a double-hulled voyaging canoe built in 2009.
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A.13 Uto ni Yalo
Uto ni Yalo is a double-hulled voyaging canoe built in 2008 for the Uto ni Yalo
Trust
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A.14 Vaka Moana
Vaka Moana is a double-hulled voyaging canoe built in 2009.
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Glossary (Math)

amplitude. definition
period. definition
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Glossary (Canoe and Wayfinding)

heading. The direction in which a canoe is pointed or moving, with true north
corresponding to 0◦ and positive angles measured in a clockwise direction.
latitude sailing. A navigational technique in which a canoe sails north or
south to reach the latitude of its destination before turning east or west. Because
stars move in an arc from east to west, they do not provide a precise measure
of longitude. However, their positions and movements shift with latitude. By
tracking these changes, navigators can determine when they have reached the
correct latitude, allowing them to adjust course toward their destination.
wa‘a kaulua. A double-hulled voyaging canoe used by Native Hawaiians
for long-distance sailing, traditionally navigated using wayfinding techniques,
without the aid of modern instruments.
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Index

‘ōpe‘a, 237

acute triangle, 225
addition

of vectors, 259
addition and subtraction formulas

for cosine, 184
for sine, 186
for tangent, 188

altitude, 17, 227, 234
ambiguous case, 230
amplitude, 97
angle, 12
angular speed, 24
apparent wind, 265, 266
arc length, 21
arc minute, 13
arc second, 13
arccosine function, 159
arcsine function, 159
arctangent function, 159
area

of a sector, 22
of a triangle, 237, 248

axial tilt, 89
azimuth, 17

backwash, 63

canoe
Alingano Maisu, 224
Fa‘afaite, 134, 257
Gaualofa, 257
Haunui, 257
Hawai‘iloa, 254
Hinemoana, 257
Hōkūle‘a, 258
Kānehūnāmoku, 228
Marumaru Atua, 257, 283
Mānaiakalani, 266
Paikea, 32, 155

Te Matau a Māui, 257
Uto Ni Yalo, 253, 257
Vaka Moana, 257

central angle, 16
cofunction identities, 51
cofunctions, 50, 51
complementary angles, 50
component form, 275
corkscrew, 155
cosine

domain, 91
range, 91

coterminal angles, 15
course over ground (COG), 283

dead reckoning, 163
declination, 26

solar, 31, 89
degree, 12
displacement, 254
double-angle formulas, 197
drift, 283

equinox
fall, 89
spring, 89

etak, 243
even and odd trigonometric

properties, 82

fundamental trigonometric
identities, 178

general solution, 214

half-angle formulas
for cosine, 201
for sine, 201
for tangent, 201, 203

heading, 16
headwind, 265
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INDEX 311

Heron’s formula, 248
horizontal shift, 100

initial side, 12
inverse cosine, 159
inverse sine, 159
inverse tangent, 159

Kūkuluokalani, 4

latitude, 12, 29
latitude sailing, 258
law of cosines, 244
law of sines, 227
leeway, 290
linear speed, 24
longshore drift, 63

magnitude, 254, 261
Makali‘i, 88
measure, 12
midline, 97
minute, 13
moon phases, 31

nautical mile, 30
negative angle, 14

oblique triangle, 225
obtuse triangle, 225
odd-even identities, 82

paafu, 1
paepae, 237
pe‘a, 237
period, 99

wave, 110
period functions, 79
periodic properties, 79
phase shift, 100
pitch, 155
positive angle, 14
product-to-sum formulas, 209
Pythagorean identities, 81

quadrantal angle, 14
quadrants, 14
quotient identities, 49

radian measure
of angles, 18

ray, 12
reciprocal identities, 48
reducing powers formulas, 200
reference angle, 68
reference course, 48

reflection
about x-axis, 95
about y-axis, 96

roll, 155

scalar, 261
scalar multiplication, 261
second, 13
semiperimeter, 248
set, 283
sine

domain, 91
range, 91

sinus curves, 94
sinusoidal graphs, 94
solar declination, 31, 89
solstice

summer, 90
winter, 89

speed
angular, 24
linear, 24

speed over ground (SOG), 283
standard position, 14
Star Compass

Cook Island, 9
Hawaiian, 4
Māori, 9
paafu, 1
Sāmoan, 9

stick chart, 7
subtraction

of vectors, 262
sum

of vectors, 259
sum-to-product formula, 211
sums of sines and cosines, 190
swash, 63

terminal side, 12
triangle inequality, 289
triangles

solving, 53
trigonometric equations, 214
trigonometric functions, 35

circle of radius r, 44
of angles, 36
of real numbers, 35
ratios, 48
special, 50
special values, 41

true wind, 265

unit circle, 34
unit vector
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same direction as v, 280

vectors, 254
components of, 281
direction, 254, 281
displacement, 254
equal, 256
equivalent, 256
horizontal component, 275
initial point, 254
length, 276
magnitude, 254, 276
position vector, 275
resultant, 259
terminal point, 254
translation, 256
unit vector, 277

velocity, 265, 282
vertical component, 275

vertical asymptote, 115
vertical compression, 97
vertical shift, 95
vertical stretch, 97

wa‘a kaulua, 254
wave height, 110
wave period, 110
wind

apparent wind, 265, 266
headwind, 265
true wind, 265

zenith, 17
zero vector, 256, 276
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