Skip to main content
Logo image

Section 3.4 Product-to-Sum and Sum-to-Product Formulas

In this section, we will learn how to convert sums of trigonometric functions to products of trigonometric functions, and vice versa. These techniques provide us with tools to simplify expressions and solve equations.

Subsection 3.4.1 Product to Sum Formulas

Definition 3.4.1. Product to Sum Formulas.

sinαcosβ=12[sin(α+β)+sin(αβ)]cosαsinβ=12[sin(α+β)sin(αβ)]cosαcosβ=12[cos(α+β)+cos(αβ)]sinαsinβ=12[cos(αβ)cos(α+β)]

Proof.

We add the addition and subtraction formulas for cosine:
cos(α+β)=cosαcosβsinαsinβ+cos(αβ)=cosαcosβ+sinαsinβcos(α+β)+cos(αβ)=2cosαcosβ.
Dividing both sides by 2, we get
12[cos(α+β)+cos(αβ)]=cosαcosβ.
Next, we add the addition and subtraction formulas for sine:
sin(α+β)=sinαcosβ+cosαsinβ+sin(αβ)=sinαcosβcosαsinβsin(α+β)+sin(αβ)=2sinαcosβ.
Dividing both sides by 2, we get
12[sin(α+β)+sin(αβ)]=sinαcosβ.
Next, we subtract the addition and subtraction formulas for sine:
sin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβsin(α+β)sin(αβ)=2cosαsinβ.
Dividing both sides by 2, we get
12[sin(α+β)sin(αβ)]=cosαsinβ.
Finally, we subtract the addition and subtraction formulas for cosine:
cos(αβ)=cosαcosβ+sinαsinβcos(α+β)=cosαcosβsinαsinβcos(αβ)cos(α+β)=2sinαsinβ.
Dividing both sides by 2, we get
12[cos(αβ)cos(α+β)]=sinαsinβ.

Example 3.4.2.

Express the product of cos(2x)cos(5x) as a sum or difference of sine and cosine with no products.

Solution.

Using the formula we get
cos(2x)cos(5x)=12[cos(2x+5x)+cos(2x5x)]=12[cos(7x)+cos(3x)].
This satisfies the requirement of expressing the product of cos(2x)cos(5x) as a sum or difference of sine and cosine with no products. However, we can simplify it further.
Since cosine is an even function, cos(3x)=cos(3x). Thus, we can simplify the expression to:
cos(2x)cos(5x)=12[cos(7x)+cos(3x)].

Example 3.4.3.

Express the product of sin(6θ)cos(4θ) as a sum or difference of sine and cosine with no products.

Solution.

Using the formula we get
sin(6θ)cos(4θ)=12[sin(6θ+4θ)+sin(6θ4θ)]=12[sin(10θ)+sin(2θ)].

Remark 3.4.4. Negative Angles.

In the previous example, both forms cos(2x)cos(5x)=12[cos(7x)+cos(3x)] and cos(2x)cos(5x)=12[cos(7x)+cos(3x)] are valid representations of the answer. However, it is more common to write the form where the angles are positive because it simplifies the expression and aligns with standard conventions for representing trigonometric identities. Positive angles are often preferred for clarity and consistency in mathematical notation. Negative angles can be transformed into positive angles using the even-odd properties of trigonometric functions (Definition 1.5.22).

Subsection 3.4.2 Sum to Product Formulas

Definition 3.4.5. Sum-to-Product Formula.

sinα+sinβ=2sin(α+β2)cos(αβ2)sinαsinβ=2cos(α+β2)sin(αβ2)cosα+cosβ=2cos(α+β2)cos(αβ2)cosαcosβ=2sin(α+β2)sin(αβ2)

Proof.

We first let α=u+v2 and β=uv2. Then
α+β=u+v2+uv2=2u2=u
and
αβ=u+v2uv2=2v2=v.
Substituting these values for α, β, α+β, and αβ into the Product-to-Sum Formulas, we get
sin(u+v2)cos(uv2)=12[sin(u)+sin(v)]cos(u+v2)sin(uv2)=12[sin(u)sin(v)]cos(u+v2)cos(uv2)=12[cos(u)+cos(v)]sin(u+v2)sin(uv2)=12[cos(v)cos(u)].
Multiplying both sides by 2 and substituting u with α and v with β, we arrive at the Sum-to-Product Formulas, where we negate the last equation.

Example 3.4.6.

Express the sum sin(8x)+sin(2x) as a product of sines or cosines.

Solution.

Using the formula we get
sin(8x)+sin(2x)=2sin(8x+2x2)cos(8x2x2)=2sin(10x2)cos(6x2)=2sin(5x)cos(3x).

Example 3.4.7.

Express the difference cos(3t)cos(5t) as a product of sines or cosines.

Solution.

Using the formula we get
cos(3t)cos(5t)=2sin(3t+5t2)sin(3t5t2)=2sin(8t2)sin(2t2)=2sin(4t)sin(t)=2sin(4t)sin(t).

Exercises 3.4.3 Exercises

Exercise Group.

Express each product as a sum or difference of sine and cosine.
1.
sin(3x)cos(5x)
Answer.
12[sin(8x)+sin(2x)]=12[sin(8x)sin(2x)]
2.
sin(7t)cos(2t)
Answer.
12[sin(5t)+sin(9t)]
3.
cos(3t)sin(7t)
Answer.
12[sin(4t)sin(10t)]=12[sin(4t)+sin(10t)]
4.
cos(9θ)sin(6θ)
Answer.
12[sin(15θ)sin(3θ)]
5.
cos(4x)cos(6x)
Answer.
12[cos(2x)+cos(10x)]=12[cos(2x)+cos(10x)]
6.
cos(2θ)cos(4θ)
Answer.
12[cos(6θ)+cos(2θ)]=12[cos(6θ)+cos(2θ)]
7.
sin(θ)sin(8θ)
Answer.
12[cos(9θ)cos(7θ)]=12[cos(9θ)cos(7θ)]
8.
sin(6t)sin(3t)
Answer.
12[cos(9t)cos(3t)]

Exercise Group.

Express each sum or difference as a product.
9.
sin(2θ)+sin(9θ)
Answer.
2sin(11θ2)cos(7θ2)=2sin(11θ2)cos(7θ2)
10.
sin(5x)+sin(7x)
Answer.
2sin(6x)cos(x)=2sin(6x)cos(x)
11.
sin(4θ)sin(7θ)
Answer.
2cos(3θ2)sin(11θ2)=2cos(3θ2)sin(11θ2)
12.
sin(3x)sin(4x)
Answer.
2cos(x2)sin(7x2)=2cos(x2)sin(7x2)
13.
cos(8θ)+cos(5θ)
Answer.
2cos(3θ2)cos(13θ2)
14.
cos(9t)+cos(2t)
Answer.
2cos(11t2)cos(7t2)
15.
cos(6θ)cos(8θ)
Answer.
2sin(7θ)sin(θ)=2sin(7θ)sin(θ)
16.
cos(6t)cos(3t)
Answer.
2sin(9t2)sin(3t2)

Exercise Group.

Find the exact value of each expression.
17.
sin(195)cos(105)
Answer.
12(32+1)
18.
cos(225)cos(195)
Answer.
34+14
19.
sin(195)sin(75)
Answer.
62
20.
cos(165)cos(105)
Answer.
22
21.
sin(285)+sin(195)
Answer.
62
22.
cos(255)+cos(15)
Answer.
22

Exercise Group.

Verify the identity
23.
sinθ+sin(3θ)=4sinθcos2θ
24.
cos(3θ)+cosθ=2(cos3θsin2θcosθ)
25.
6cos(5θ)sin(6θ)=3sin(11θ)+3sin(θ)
26.
sinθ+sin(3θ)2sin(2θ)=cosθ
27.
cosθ+cos(3θ)2cos(2θ)=cosθ
28.
cosθcos(3θ)sinθ+sin(3θ)=tanθ